Cargando…
Glycated α-lactalbumin based micelles for quercetin delivery: Physicochemical stability and fate of simulated digestion
Glycated protein is a kind of promising material that can improve the bioavailability of bioactive compounds and achieve sustained release under digestion. In this study, the α-lactalbumin (ALA)-dextran conjugates synthesized by Maillard reaction were fabricated to load and protect quercetin. Querce...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039997/ https://www.ncbi.nlm.nih.gov/pubmed/35499028 http://dx.doi.org/10.1016/j.fochx.2022.100257 |
Sumario: | Glycated protein is a kind of promising material that can improve the bioavailability of bioactive compounds and achieve sustained release under digestion. In this study, the α-lactalbumin (ALA)-dextran conjugates synthesized by Maillard reaction were fabricated to load and protect quercetin. Quercetin-loaded micelles stabilized by the ALA-dextran conjugates 1:4 showed the smallest size (428.57 ± 5.64 nm) with highest encapsulation efficiency (94.38% ± 0.50%) of quercetin. Compared to ALA/dextran mixture complex, the conjugates-based micelles had better pH, ionic strength and photothermal stability. Furthermore, the micelles composed of the conjugates 1:2 and 1:4 showed the best controlled release effect during the simulated digestion, releasing 62.41% and 66.15% of quercetin from the total encapsulated contents, respectively, which was mainly related to the resistance of glycated ALA to the enzymes. The findings indicated that ALA-dextran conjugates could be effectively designed for the ideal delivery system of hydrophobic bioactive compounds in food industry. |
---|