Cargando…
Ontology-aware deep learning enables ultrafast and interpretable source tracking among sub-million microbial community samples from hundreds of niches
The taxonomic structure of microbial community sample is highly habitat-specific, making source tracking possible, allowing identification of the niches where samples originate. However, current methods face challenges when source tracking is scaled up. Here, we introduce a deep learning method base...
Autores principales: | Zha, Yuguo, Chong, Hui, Qiu, Hao, Kang, Kai, Dun, Yuzheng, Chen, Zhixue, Cui, Xuefeng, Ning, Kang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040266/ https://www.ncbi.nlm.nih.gov/pubmed/35473941 http://dx.doi.org/10.1186/s13073-022-01047-5 |
Ejemplares similares
-
Ontology-aware neural network: a general framework for pattern mining from microbiome data
por: Zha, Yuguo, et al.
Publicado: (2022) -
GAVIN: Gene-Aware Variant INterpretation for medical sequencing
por: van der Velde, K. Joeri, et al.
Publicado: (2017) -
Hierarchical Interleaved Bloom Filter: enabling ultrafast, approximate sequence queries
por: Mehringer, Svenja, et al.
Publicado: (2023) -
An ontology for cell types
por: Bard, Jonathan, et al.
Publicado: (2005) -
Relations in biomedical ontologies
por: Smith, Barry, et al.
Publicado: (2005)