Cargando…
Left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging
BACKGROUND: Echo-Particle Image Velocimetry (echoPIV) tracks speckle patterns from ultrasound contrast agent(UCA), being less angle-sensitive than colour Doppler. High frame rate (HFR) echoPIV enables tracking of high velocity flow in the left ventricle (LV). We aimed to demonstrate the potential cl...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040345/ https://www.ncbi.nlm.nih.gov/pubmed/35473581 http://dx.doi.org/10.1186/s12947-022-00283-4 |
_version_ | 1784694316452544512 |
---|---|
author | Strachinaru, Mihai Voorneveld, Jason Keijzer, Lana B. H. Bowen, Daniel J. Mutluer, Ferit O. Cate, Folkert ten de Jong, Nico Vos, Hendrik J. Bosch, Johan G. van den Bosch, Annemien E. |
author_facet | Strachinaru, Mihai Voorneveld, Jason Keijzer, Lana B. H. Bowen, Daniel J. Mutluer, Ferit O. Cate, Folkert ten de Jong, Nico Vos, Hendrik J. Bosch, Johan G. van den Bosch, Annemien E. |
author_sort | Strachinaru, Mihai |
collection | PubMed |
description | BACKGROUND: Echo-Particle Image Velocimetry (echoPIV) tracks speckle patterns from ultrasound contrast agent(UCA), being less angle-sensitive than colour Doppler. High frame rate (HFR) echoPIV enables tracking of high velocity flow in the left ventricle (LV). We aimed to demonstrate the potential clinical use of HFR echoPIV and investigate the feasibility and accuracy in patients. METHODS: Nineteen patients admitted for heart failure were included. HFR contrast images were acquired from an apical long axis view (ALAX), using a fully-programmable ultrasound system. A clinical UCA was continuously infused with a dedicated pump. Additionally, echocardiographic images were obtained using a clinical system, including LV contrast-enhanced images and pulsed-wave (PW) Doppler of the LV inflow and outflow in ALAX. 11 patients underwent CMR and 4 cardiac CT as clinically indicated. These CMR and CT images were used as reference. In 10 patients with good echoPIV tracking and reference imaging, the intracavitary flow was compared between echoPIV, conventional and UCA echocardiography. RESULTS: EchoPIV tracking quality was good in 12/19 (63%), moderate in 2/19 (10%) and poor in 5/19 (26%) subjects. EchoPIV could determine inflow velocity in 17/19 (89%), and outflow in 14/19 (74%) patients. The correlation of echoPIV and PW Doppler was good for the inflow (R(2) = 0.77 to PW peak; R(2) = 0.80 PW mean velocity) and moderate for the outflow (R(2) = 0.54 to PW peak; R(2) = 0.44 to PW mean velocity), with a tendency for echoPIV to underestimate PW velocities. In selected patients, echoPIV was able in a single acquisition to demonstrate flow patterns which required multiple interrogations with classical echocardiography. Those flow patterns could also be linked to anatomical abnormalities as seen in CMR or CT. CONCLUSION: HFR echoPIV tracks multidirectional and complex flow patterns which are unapparent with conventional echocardiography, while having comparable feasibility. EchoPIV tends to underestimate flow velocities as compared to PW Doppler. It has the potential to provide in one acquisition all the functional information obtained by conventional imaging, overcoming the angle dependency of Doppler and low frame rate of classical contrast imaging. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12947-022-00283-4. |
format | Online Article Text |
id | pubmed-9040345 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-90403452022-04-27 Left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging Strachinaru, Mihai Voorneveld, Jason Keijzer, Lana B. H. Bowen, Daniel J. Mutluer, Ferit O. Cate, Folkert ten de Jong, Nico Vos, Hendrik J. Bosch, Johan G. van den Bosch, Annemien E. Cardiovasc Ultrasound Research BACKGROUND: Echo-Particle Image Velocimetry (echoPIV) tracks speckle patterns from ultrasound contrast agent(UCA), being less angle-sensitive than colour Doppler. High frame rate (HFR) echoPIV enables tracking of high velocity flow in the left ventricle (LV). We aimed to demonstrate the potential clinical use of HFR echoPIV and investigate the feasibility and accuracy in patients. METHODS: Nineteen patients admitted for heart failure were included. HFR contrast images were acquired from an apical long axis view (ALAX), using a fully-programmable ultrasound system. A clinical UCA was continuously infused with a dedicated pump. Additionally, echocardiographic images were obtained using a clinical system, including LV contrast-enhanced images and pulsed-wave (PW) Doppler of the LV inflow and outflow in ALAX. 11 patients underwent CMR and 4 cardiac CT as clinically indicated. These CMR and CT images were used as reference. In 10 patients with good echoPIV tracking and reference imaging, the intracavitary flow was compared between echoPIV, conventional and UCA echocardiography. RESULTS: EchoPIV tracking quality was good in 12/19 (63%), moderate in 2/19 (10%) and poor in 5/19 (26%) subjects. EchoPIV could determine inflow velocity in 17/19 (89%), and outflow in 14/19 (74%) patients. The correlation of echoPIV and PW Doppler was good for the inflow (R(2) = 0.77 to PW peak; R(2) = 0.80 PW mean velocity) and moderate for the outflow (R(2) = 0.54 to PW peak; R(2) = 0.44 to PW mean velocity), with a tendency for echoPIV to underestimate PW velocities. In selected patients, echoPIV was able in a single acquisition to demonstrate flow patterns which required multiple interrogations with classical echocardiography. Those flow patterns could also be linked to anatomical abnormalities as seen in CMR or CT. CONCLUSION: HFR echoPIV tracks multidirectional and complex flow patterns which are unapparent with conventional echocardiography, while having comparable feasibility. EchoPIV tends to underestimate flow velocities as compared to PW Doppler. It has the potential to provide in one acquisition all the functional information obtained by conventional imaging, overcoming the angle dependency of Doppler and low frame rate of classical contrast imaging. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12947-022-00283-4. BioMed Central 2022-04-26 /pmc/articles/PMC9040345/ /pubmed/35473581 http://dx.doi.org/10.1186/s12947-022-00283-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visithttp://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Strachinaru, Mihai Voorneveld, Jason Keijzer, Lana B. H. Bowen, Daniel J. Mutluer, Ferit O. Cate, Folkert ten de Jong, Nico Vos, Hendrik J. Bosch, Johan G. van den Bosch, Annemien E. Left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging |
title | Left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging |
title_full | Left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging |
title_fullStr | Left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging |
title_full_unstemmed | Left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging |
title_short | Left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging |
title_sort | left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040345/ https://www.ncbi.nlm.nih.gov/pubmed/35473581 http://dx.doi.org/10.1186/s12947-022-00283-4 |
work_keys_str_mv | AT strachinarumihai leftventricularhighframerateechoparticleimagevelocimetryclinicalapplicationandcomparisonwithconventionalimaging AT voorneveldjason leftventricularhighframerateechoparticleimagevelocimetryclinicalapplicationandcomparisonwithconventionalimaging AT keijzerlanabh leftventricularhighframerateechoparticleimagevelocimetryclinicalapplicationandcomparisonwithconventionalimaging AT bowendanielj leftventricularhighframerateechoparticleimagevelocimetryclinicalapplicationandcomparisonwithconventionalimaging AT mutluerferito leftventricularhighframerateechoparticleimagevelocimetryclinicalapplicationandcomparisonwithconventionalimaging AT catefolkertten leftventricularhighframerateechoparticleimagevelocimetryclinicalapplicationandcomparisonwithconventionalimaging AT dejongnico leftventricularhighframerateechoparticleimagevelocimetryclinicalapplicationandcomparisonwithconventionalimaging AT voshendrikj leftventricularhighframerateechoparticleimagevelocimetryclinicalapplicationandcomparisonwithconventionalimaging AT boschjohang leftventricularhighframerateechoparticleimagevelocimetryclinicalapplicationandcomparisonwithconventionalimaging AT vandenboschannemiene leftventricularhighframerateechoparticleimagevelocimetryclinicalapplicationandcomparisonwithconventionalimaging |