Cargando…
Low cost, high efficiency flexible supercapacitor electrodes made from areca nut husk nanocellulose and silver nanoparticle embedded polyaniline
Energy storage is a key aspect in the smooth functioning of the numerous gadgets that aid easy maneuvering through modern life. Supercapacitors that store energy faradaically have recently emerged as potential inventions for which mechanical flexibility is an absolute requirement for their future ap...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040598/ https://www.ncbi.nlm.nih.gov/pubmed/35479563 http://dx.doi.org/10.1039/d1ra04920h |
_version_ | 1784694368306724864 |
---|---|
author | Sasi, Soorya Krishna, C. Ardra Sugunan, Sunish K. Chandran, Akash Nair, P. Radhakrishnan Subramanian, K. R. V. Mathew, Suresh |
author_facet | Sasi, Soorya Krishna, C. Ardra Sugunan, Sunish K. Chandran, Akash Nair, P. Radhakrishnan Subramanian, K. R. V. Mathew, Suresh |
author_sort | Sasi, Soorya |
collection | PubMed |
description | Energy storage is a key aspect in the smooth functioning of the numerous gadgets that aid easy maneuvering through modern life. Supercapacitors that store energy faradaically have recently emerged as potential inventions for which mechanical flexibility is an absolute requirement for their future applications. Flexible supercapacitors based on nanocellulose extracted from easily available waste materials via low cost methods have recently garnered great attention. In the present work, we discuss the construction of flexible, binder-free supercapacitive electrodes using nanocellulose extracted from locally available areca nut husks and polyaniline embedded with silver nanoparticles. The prepared electrodes were characterized using SEM, TEM, XRD, FTIR, EDX and electrochemical characterization techniques such as CV, galvanostatic charge–discharge, chronoamperometry and EIS. A specific capacitance of 780 F g(−1) was obtained for the silver nanoparticle embedded polyaniline–nanocellulose (Ag–PANI–NC) substrate supported electrodes, which is ∼4.2 times greater than that of bare polyaniline–nanocellulose electrodes. We attributed this enhancement to a lowering of the activation energy barrier of correlated electron hopping among localized defect states in the composite matrix by the Ag nanoparticles. An energy density value of 15.64 W h kg(−1) and a power density of 244.8 W kg(−1) were obtained for the prepared electrodes. It was observed that the Ag–PANI–NC based electrode can retain ∼98% of its specific capacitance upon recovery from mechanical bending to extreme degrees. |
format | Online Article Text |
id | pubmed-9040598 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90405982022-04-26 Low cost, high efficiency flexible supercapacitor electrodes made from areca nut husk nanocellulose and silver nanoparticle embedded polyaniline Sasi, Soorya Krishna, C. Ardra Sugunan, Sunish K. Chandran, Akash Nair, P. Radhakrishnan Subramanian, K. R. V. Mathew, Suresh RSC Adv Chemistry Energy storage is a key aspect in the smooth functioning of the numerous gadgets that aid easy maneuvering through modern life. Supercapacitors that store energy faradaically have recently emerged as potential inventions for which mechanical flexibility is an absolute requirement for their future applications. Flexible supercapacitors based on nanocellulose extracted from easily available waste materials via low cost methods have recently garnered great attention. In the present work, we discuss the construction of flexible, binder-free supercapacitive electrodes using nanocellulose extracted from locally available areca nut husks and polyaniline embedded with silver nanoparticles. The prepared electrodes were characterized using SEM, TEM, XRD, FTIR, EDX and electrochemical characterization techniques such as CV, galvanostatic charge–discharge, chronoamperometry and EIS. A specific capacitance of 780 F g(−1) was obtained for the silver nanoparticle embedded polyaniline–nanocellulose (Ag–PANI–NC) substrate supported electrodes, which is ∼4.2 times greater than that of bare polyaniline–nanocellulose electrodes. We attributed this enhancement to a lowering of the activation energy barrier of correlated electron hopping among localized defect states in the composite matrix by the Ag nanoparticles. An energy density value of 15.64 W h kg(−1) and a power density of 244.8 W kg(−1) were obtained for the prepared electrodes. It was observed that the Ag–PANI–NC based electrode can retain ∼98% of its specific capacitance upon recovery from mechanical bending to extreme degrees. The Royal Society of Chemistry 2021-09-02 /pmc/articles/PMC9040598/ /pubmed/35479563 http://dx.doi.org/10.1039/d1ra04920h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Sasi, Soorya Krishna, C. Ardra Sugunan, Sunish K. Chandran, Akash Nair, P. Radhakrishnan Subramanian, K. R. V. Mathew, Suresh Low cost, high efficiency flexible supercapacitor electrodes made from areca nut husk nanocellulose and silver nanoparticle embedded polyaniline |
title | Low cost, high efficiency flexible supercapacitor electrodes made from areca nut husk nanocellulose and silver nanoparticle embedded polyaniline |
title_full | Low cost, high efficiency flexible supercapacitor electrodes made from areca nut husk nanocellulose and silver nanoparticle embedded polyaniline |
title_fullStr | Low cost, high efficiency flexible supercapacitor electrodes made from areca nut husk nanocellulose and silver nanoparticle embedded polyaniline |
title_full_unstemmed | Low cost, high efficiency flexible supercapacitor electrodes made from areca nut husk nanocellulose and silver nanoparticle embedded polyaniline |
title_short | Low cost, high efficiency flexible supercapacitor electrodes made from areca nut husk nanocellulose and silver nanoparticle embedded polyaniline |
title_sort | low cost, high efficiency flexible supercapacitor electrodes made from areca nut husk nanocellulose and silver nanoparticle embedded polyaniline |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040598/ https://www.ncbi.nlm.nih.gov/pubmed/35479563 http://dx.doi.org/10.1039/d1ra04920h |
work_keys_str_mv | AT sasisoorya lowcosthighefficiencyflexiblesupercapacitorelectrodesmadefromarecanuthusknanocelluloseandsilvernanoparticleembeddedpolyaniline AT krishnacardra lowcosthighefficiencyflexiblesupercapacitorelectrodesmadefromarecanuthusknanocelluloseandsilvernanoparticleembeddedpolyaniline AT sugunansunishk lowcosthighefficiencyflexiblesupercapacitorelectrodesmadefromarecanuthusknanocelluloseandsilvernanoparticleembeddedpolyaniline AT chandranakash lowcosthighefficiencyflexiblesupercapacitorelectrodesmadefromarecanuthusknanocelluloseandsilvernanoparticleembeddedpolyaniline AT nairpradhakrishnan lowcosthighefficiencyflexiblesupercapacitorelectrodesmadefromarecanuthusknanocelluloseandsilvernanoparticleembeddedpolyaniline AT subramaniankrv lowcosthighefficiencyflexiblesupercapacitorelectrodesmadefromarecanuthusknanocelluloseandsilvernanoparticleembeddedpolyaniline AT mathewsuresh lowcosthighefficiencyflexiblesupercapacitorelectrodesmadefromarecanuthusknanocelluloseandsilvernanoparticleembeddedpolyaniline |