Cargando…
Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon
Herein, we developed the dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon. Sulphuric acid, hydrogen peroxide, nitric acid and aminopropyl triethoxy silane were adopted to modify the granular activated carbon. The structural characterizati...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040619/ https://www.ncbi.nlm.nih.gov/pubmed/35479578 http://dx.doi.org/10.1039/d1ra05480e |
_version_ | 1784694371765977088 |
---|---|
author | Ye, Hong-Li Liu, Shuang-Xi Zhang, Cui Cai, You-Qiong Shi, Yong-Fu |
author_facet | Ye, Hong-Li Liu, Shuang-Xi Zhang, Cui Cai, You-Qiong Shi, Yong-Fu |
author_sort | Ye, Hong-Li |
collection | PubMed |
description | Herein, we developed the dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon. Sulphuric acid, hydrogen peroxide, nitric acid and aminopropyl triethoxy silane were adopted to modify the granular activated carbon. The structural characterizations suggested that the carbon materials had a large surface area, abundant pore structure, and a high number of oxygen-containing functional groups, which influenced the Pt-based catalysts on the particle size, dispersion and dehydrogenation activity. The hydrogen temperature-programmed reduction technique was utilized to investigate the interaction between the active component Pt and the various functionalized granular activated carbon materials. The CO pulse technique revealed the particle sizes and dispersion of the as-prepared Pt-based catalysts. Finally, the Pt-based catalysts were successfully applied to study their catalytic activity in the dehydrogenation reaction of methylcyclohexane. The results showed that the Pt-based catalyst over granular activated carbon functionalized with sulphuric acid groups had a higher conversion of methylcyclohexane (63%) and a larger hydrogen evolution rate (741.1 mmol g(Pt)(−1) min(−1)) than the other resulting Pt-based catalysts at 300 °C. |
format | Online Article Text |
id | pubmed-9040619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90406192022-04-26 Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon Ye, Hong-Li Liu, Shuang-Xi Zhang, Cui Cai, You-Qiong Shi, Yong-Fu RSC Adv Chemistry Herein, we developed the dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon. Sulphuric acid, hydrogen peroxide, nitric acid and aminopropyl triethoxy silane were adopted to modify the granular activated carbon. The structural characterizations suggested that the carbon materials had a large surface area, abundant pore structure, and a high number of oxygen-containing functional groups, which influenced the Pt-based catalysts on the particle size, dispersion and dehydrogenation activity. The hydrogen temperature-programmed reduction technique was utilized to investigate the interaction between the active component Pt and the various functionalized granular activated carbon materials. The CO pulse technique revealed the particle sizes and dispersion of the as-prepared Pt-based catalysts. Finally, the Pt-based catalysts were successfully applied to study their catalytic activity in the dehydrogenation reaction of methylcyclohexane. The results showed that the Pt-based catalyst over granular activated carbon functionalized with sulphuric acid groups had a higher conversion of methylcyclohexane (63%) and a larger hydrogen evolution rate (741.1 mmol g(Pt)(−1) min(−1)) than the other resulting Pt-based catalysts at 300 °C. The Royal Society of Chemistry 2021-09-01 /pmc/articles/PMC9040619/ /pubmed/35479578 http://dx.doi.org/10.1039/d1ra05480e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Ye, Hong-Li Liu, Shuang-Xi Zhang, Cui Cai, You-Qiong Shi, Yong-Fu Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon |
title | Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon |
title_full | Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon |
title_fullStr | Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon |
title_full_unstemmed | Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon |
title_short | Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon |
title_sort | dehydrogenation of methylcyclohexane over pt-based catalysts supported on functional granular activated carbon |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040619/ https://www.ncbi.nlm.nih.gov/pubmed/35479578 http://dx.doi.org/10.1039/d1ra05480e |
work_keys_str_mv | AT yehongli dehydrogenationofmethylcyclohexaneoverptbasedcatalystssupportedonfunctionalgranularactivatedcarbon AT liushuangxi dehydrogenationofmethylcyclohexaneoverptbasedcatalystssupportedonfunctionalgranularactivatedcarbon AT zhangcui dehydrogenationofmethylcyclohexaneoverptbasedcatalystssupportedonfunctionalgranularactivatedcarbon AT caiyouqiong dehydrogenationofmethylcyclohexaneoverptbasedcatalystssupportedonfunctionalgranularactivatedcarbon AT shiyongfu dehydrogenationofmethylcyclohexaneoverptbasedcatalystssupportedonfunctionalgranularactivatedcarbon |