Cargando…

Mac1-Dependent Copper Sensing Promotes Histoplasma Adaptation to the Phagosome during Adaptive Immunity

Intracellular pathogens residing within macrophage phagosomes are challenged with recognizing the phagosomal environment and appropriately responding to changing host defense strategies imposed in this organelle. One such phagocyte defense is the restriction of available copper as a form of nutritio...

Descripción completa

Detalles Bibliográficos
Autores principales: Ray, Stephanie C., Rappleye, Chad A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040751/
https://www.ncbi.nlm.nih.gov/pubmed/35404120
http://dx.doi.org/10.1128/mbio.03773-21
Descripción
Sumario:Intracellular pathogens residing within macrophage phagosomes are challenged with recognizing the phagosomal environment and appropriately responding to changing host defense strategies imposed in this organelle. One such phagocyte defense is the restriction of available copper as a form of nutritional immunity during the adaptive immune response to fungal pathogens. The intracellular fungal pathogen Histoplasma capsulatum adapts to this decreased copper through upregulation of the Ctr3 copper transporter. In this study, we show that Histoplasma recognizes the characteristic low-copper phagosomal environment of activated macrophages through the copper-dependent transcriptional regulator Mac1. Multiple cis-acting regulatory sequences in the CTR3 promoter control upregulation of CTR3 transcription under low-copper conditions, and the loss of Mac1 function prevents induction of Ctr3 under low-copper conditions. During adaptive immunity, this loss of copper sensing by Mac1 attenuates Histoplasma virulence more severely than loss of Ctr3 alone, indicating that Mac1 controls the expression of additional mechanisms important for pathogenesis. Transcriptional profiling of Histoplasma yeasts identified a small regulon of Mac1-dependent genes, with the most strongly regulated genes encoding proteins linked to copper, iron, and zinc homeostasis and defenses against reactive oxygen (iron-requiring catalase [CatB] and superoxide dismutase [Sod4]). Accordingly, the loss of Mac1 function increased sensitivity to copper and iron restriction and blocked low-copper-induced expression of extracellular catalase activity. Thus, Mac1-mediated sensing of low-copper signals to Histoplasma yeasts their residence within the activated macrophage phagosome, and in response, Histoplasma yeasts produce factors, including non-copper-dependent factors, to combat the enhanced defenses of activated macrophages.