Cargando…
Diverse Subclade Differentiation Attributed to the Ubiquity of Prochlorococcus High-Light-Adapted Clade II
Prochlorococcus is the key primary producer in marine ecosystems, and the high-light-adapted clade II (HLII) is the most abundant ecotype. However, the genomic and ecological basis of Prochlorococcus HLII in the marine environment has remained elusive. Here, we show that the ecologically coherent su...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040837/ https://www.ncbi.nlm.nih.gov/pubmed/35285694 http://dx.doi.org/10.1128/mbio.03027-21 |
Sumario: | Prochlorococcus is the key primary producer in marine ecosystems, and the high-light-adapted clade II (HLII) is the most abundant ecotype. However, the genomic and ecological basis of Prochlorococcus HLII in the marine environment has remained elusive. Here, we show that the ecologically coherent subclade differentiation of HLII corresponds to genomic and ecological characteristics on the basis of analyses of 31 different strains of HLII, including 12 novel isolates. Different subclades of HLII with different core and accessory genes were identified, and their distribution in the marine environment was explored using the TARA Oceans metagenome database. Three major subclade groups were identified, viz., the surface group (HLII-SG), the transition group (HLII-TG), and the deep group (HLII-DG). These subclade groups showed different temperature ranges and optima for distribution. In regression analyses, temperature and nutrient availability were identified as key factors affecting the distribution of HLII subclades. A 35% increase in the relative abundance of HLII-SG by the end of the 21st century was predicted under the Representative Concentration Pathway 8.5 scenario. Our results show that the ubiquity and distribution of Prochlorococcus HLII in the marine environment are associated with the differentiation of diverse subclades. These findings provide insights into the large-scale shifts in the Prochlorococcus community in response to future climate change. |
---|