Cargando…
Chlorinated metabolites with antibacterial activities from a deep-sea-derived Spiromastix fungus
Chromatographic separation of the solid cultures of a deep-sea-derived Spiromastix fungus (MCCC 3A00308) resulted in the isolation of eight compounds. Their structures were identified on the basis of the spectroscopic data. Compounds 1–8 are classified as depsidone-type (1–4), isocoumarin-type (5 an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041095/ https://www.ncbi.nlm.nih.gov/pubmed/35479535 http://dx.doi.org/10.1039/d1ra05736g |
Sumario: | Chromatographic separation of the solid cultures of a deep-sea-derived Spiromastix fungus (MCCC 3A00308) resulted in the isolation of eight compounds. Their structures were identified on the basis of the spectroscopic data. Compounds 1–8 are classified as depsidone-type (1–4), isocoumarin-type (5 and 6), and benzothiazole-type (7 and 8), of which 1–7 are new compounds and 1–3 along with 5 and 6 are chlorinated. Compound 3 is characterized by trichlorination and shows potent activities against Gram-positive pathogenic bacteria including Staphylococcus aureus ATCC 25923, Bacillus thuringiensis ATCC 10792, and Bacillus subtilis CMCC 63501, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 1.0 μg mL(−1). This study extends the chemical diversity of chlorinated natural products from marine-derived fungi and provides a promising lead for the development of antibacterial agents. |
---|