Cargando…

Effect of simulated saliva components on the in vitro digestion of peanut oil body emulsion

The digestion properties of natural oil bodies (OBs) are very important to their potential applications such as traditional fat replacement or bioactive delivery systems. However, study on the complete digestion behaviours of OBs has not been reported yet. In this paper, peanut OBs were extracted by...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Qian, Gao, Chao, Yang, Nan, Nishinari, Katsuyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041154/
https://www.ncbi.nlm.nih.gov/pubmed/35479856
http://dx.doi.org/10.1039/d1ra03274g
Descripción
Sumario:The digestion properties of natural oil bodies (OBs) are very important to their potential applications such as traditional fat replacement or bioactive delivery systems. However, study on the complete digestion behaviours of OBs has not been reported yet. In this paper, peanut OBs were extracted by an aqueous medium method, and their digestion behaviour was studied using completed in vitro oral-gastric-intestinal digestion simulation. In particular, the effects of saliva components, mainly α-amylase and mucin, on the digestion of the peanut OBs were systematically investigated. The OB emulsion microstructure, average particle size d(4,3), ζ-potential, and surface protein compositions during oral, gastric and intestinal digestion, and the free fatty acid (FFA) release rate of the peanut OBs during intestinal digestion were determined. Interestingly, it was revealed from both the periodic acid-Schiff staining technique and the confocal laser microscopy characterization that glycosidic bonds exist on the surface of the peanut OBs, though how they were produced was unknown. The results from the digestion measurements showed that α-amylase in saliva can break the glycosidic bonds in oral digestion, promoting the digestion of the OBs in the gastric and intestinal environments. Saliva mucin caused bridging flocculation of OBs by electrostatic attraction in the gastric tract, and depletion flocculation of OBs in the intestinal tract. The former hindered the fusion of oil droplets, and the latter promoted FFA release rate by increasing the contacting surface area of OBs with bile salts.