Cargando…

Standardized tensile testing of soft tissue using a 3D printed clamping system

Biomechanical testing of soft tissues forms the backbone in the experimental validation of tissue engineering and for modelling purposes. The standardized testing of soft tissues requires different experimental protocols and fixtures compared to hard tissues or non-biological materials due to their...

Descripción completa

Detalles Bibliográficos
Autores principales: Scholze, Mario, Safavi, Sarah, Li, Kai Chun, Ondruschka, Benjamin, Werner, Michael, Zwirner, Johann, Hammer, Niels
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041186/
https://www.ncbi.nlm.nih.gov/pubmed/35498242
http://dx.doi.org/10.1016/j.ohx.2020.e00159
Descripción
Sumario:Biomechanical testing of soft tissues forms the backbone in the experimental validation of tissue engineering and for modelling purposes. The standardized testing of soft tissues requires different experimental protocols and fixtures compared to hard tissues or non-biological materials due to their characteristics. Some of the most commonly-used clamping methods for soft tissue testing affect the tissues’ mechanical properties as chemicals are involved to decelerate degradation and autolysis. Moreover, they are unsuitable for standardized and high-throughput testing. Material slippage is also a recurrent unwanted influence on the testing routine with impact on measurement validity. Addressing these issues, this protocol presents a clamping system for simplified testing of biological soft tissues with all necessary components manufactured utilizing 3D printing technology. Templates allow trimming the samples into standardized shapes and sizes while preparation tables facilitate clamping in a fixed distance. The key parts of the system are clamps with a pyramid design, which allow the mounting of biological soft tissues before transferring it into the testing device and minimize material slippage during tensile testing. Flexible holder arms are used to transfer samples from preparation tables into the testing device and simplify positioning. Mechanical testing itself is performed with digital image correlation for precise strain measurements.