Cargando…

A low-cost didactic module for testing advanced control algorithms

Commercial modules for learning advanced control systems are not quite common and some are very expensive due to their sensors, electronic and license. There is an open area to develop and to build didactic modules to improve the learning process using experimentation in real physical systems. Parti...

Descripción completa

Detalles Bibliográficos
Autores principales: Pinares-Mamani, Omar Gustavo Celso, Cutipa-Luque, Juan C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041222/
https://www.ncbi.nlm.nih.gov/pubmed/35498244
http://dx.doi.org/10.1016/j.ohx.2020.e00148
Descripción
Sumario:Commercial modules for learning advanced control systems are not quite common and some are very expensive due to their sensors, electronic and license. There is an open area to develop and to build didactic modules to improve the learning process using experimentation in real physical systems. Particularly, a cart inverted pendulum is a classical physical system very commonly used in recent decades. We propose a cart inverted pendulum named MoDiCA-X as a low-cost didactic module with open source hardware and software. It is an electromechanical system feasible to build and easy to be modified. The mechanical parts of the module are 3D printed solids and can also be easily replicated. In terms of programming, the control applied to the system can be modified, since it uses C/C++ programming languages that are widely used in the academic community. The module is equipped with two very commercial sensors, are easy to install and to remove; both acquire the pendulum attitude and the car position. The actuators are four electric DC motors coupled to the car wheels to provide suitable velocity and torque to each axle independently. We validate the performance of the module by applying a multivariable linear quadratic regulator algorithm (LQR).