Cargando…
The FAST Pump, a low-cost, easy to fabricate, SLA-3D-printed peristaltic pump for multi-channel systems in any lab
With the increasing interest in high throughput screening and parallel assays, laboratories around the world inevitably find themselves in need of driving a multitude of fluid lines to facilitate their large scale studies. The comparatively low cost and no-fluid-contact design of peristaltic pumps m...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041223/ https://www.ncbi.nlm.nih.gov/pubmed/35498250 http://dx.doi.org/10.1016/j.ohx.2020.e00115 |
Sumario: | With the increasing interest in high throughput screening and parallel assays, laboratories around the world inevitably find themselves in need of driving a multitude of fluid lines to facilitate their large scale studies. The comparatively low cost and no-fluid-contact design of peristaltic pumps make them the go-to systems for such ventures, but using commercially available pumping systems this still becomes a costly endeavor at typically $250-$1000 per pump line. Here we have developed an alternative, a peristaltic pump that can be fabricated in most research laboratories using 3D-printing and readily available off-the-shelf parts. The pump features 8 parallel channels with linear ranges spanning from 0.7 µL/min to 6 mL/min. The pump can be fabricated and assembled by anyone with access to a 3D-printer at a cost of less than $45 per channel and is driven by a stepper motor that connects directly to any computer. This device has the potential to be disruptive in areas such as drug screening and assay development, as well as lab-on-a-chip applications and cell cultivation, where it significantly reduces hardware expenses and allows for construction of more comprehensive fluidic systems at a fraction of current costs. |
---|