Cargando…
Open source all-iron battery 2.0
In this work we present significant improvements to the open-source all-iron battery. We show higher power density and simpler fabrication. We also show a more reproducible procedure for preparing the electrolytes. The results are a highly rechargeable electrochemical cell based on iron, chloride, s...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041250/ https://www.ncbi.nlm.nih.gov/pubmed/35492057 http://dx.doi.org/10.1016/j.ohx.2020.e00171 |
Sumario: | In this work we present significant improvements to the open-source all-iron battery. We show higher power density and simpler fabrication. We also show a more reproducible procedure for preparing the electrolytes. The results are a highly rechargeable electrochemical cell based on iron, chloride, sulfate, and potassium ions in water at near-neutral pH. The cell is stable for thousands of cycles. It displays modest energy density consistent with the previous all-iron battery. The current is improved by a factor of 10 to a practical level of 500 mA/L and is able to deliver a maximal power of 250 mW/L. While this is modest performance compared to commercial rechargeable batteries, its low cost, simple synthesis, and safe manufacturing may make it suitable for storing renewable energy. |
---|