Cargando…
A descriptive study of variable discretization and cost-sensitive logistic regression on imbalanced credit data
Training classification models on imbalanced data tends to result in bias towards the majority class. In this paper, we demonstrate how variable discretization and cost-sensitive logistic regression help mitigate this bias on an imbalanced credit scoring dataset, and further show the application of...
Autores principales: | Zhang, Lili, Ray, Herman, Priestley, Jennifer, Tan, Soon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041569/ https://www.ncbi.nlm.nih.gov/pubmed/35706966 http://dx.doi.org/10.1080/02664763.2019.1643829 |
Ejemplares similares
-
Random distributed logistic regression framework for predicting potential lncRNA‒disease association
por: Sun, Yichen, et al.
Publicado: (2021) -
Trinculo: Bayesian and frequentist multinomial logistic regression for genome-wide association studies of multi-category phenotypes
por: Jostins, Luke, et al.
Publicado: (2016) -
Stable variable ranking and selection in regularized logistic regression for severely imbalanced big binary data
por: Nadeem, Khurram, et al.
Publicado: (2023) -
Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble
por: Wang, Hong, et al.
Publicado: (2015) -
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data
por: Wu, Yuan, et al.
Publicado: (2012)