Cargando…

A new Poisson Liu Regression Estimator: method and application

This paper considers the estimation of parameters for the Poisson regression model in the presence of high, but imperfect multicollinearity. To mitigate this problem, we suggest using the Poisson Liu Regression Estimator (PLRE) and propose some new approaches to estimate this shrinkage parameter. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Qasim, Muhammad, Kibria, B. M. G., Månsson, Kristofer, Sjölander, Pär
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041668/
https://www.ncbi.nlm.nih.gov/pubmed/35706835
http://dx.doi.org/10.1080/02664763.2019.1707485
Descripción
Sumario:This paper considers the estimation of parameters for the Poisson regression model in the presence of high, but imperfect multicollinearity. To mitigate this problem, we suggest using the Poisson Liu Regression Estimator (PLRE) and propose some new approaches to estimate this shrinkage parameter. The small sample statistical properties of these estimators are systematically scrutinized using Monte Carlo simulations. To evaluate the performance of these estimators, we assess the Mean Square Errors (MSE) and the Mean Absolute Percentage Errors (MAPE). The simulation results clearly illustrate the benefit of the methods of estimating these types of shrinkage parameters in finite samples. Finally, we illustrate the empirical relevance of our newly proposed methods using an empirically relevant application. Thus, in summary, via simulations of empirically relevant parameter values, and by a standard empirical application, it is clearly demonstrated that our technique exhibits more precise estimators, compared to traditional techniques – at least when multicollinearity exist among the regressors.