Cargando…

A new Poisson Liu Regression Estimator: method and application

This paper considers the estimation of parameters for the Poisson regression model in the presence of high, but imperfect multicollinearity. To mitigate this problem, we suggest using the Poisson Liu Regression Estimator (PLRE) and propose some new approaches to estimate this shrinkage parameter. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Qasim, Muhammad, Kibria, B. M. G., Månsson, Kristofer, Sjölander, Pär
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041668/
https://www.ncbi.nlm.nih.gov/pubmed/35706835
http://dx.doi.org/10.1080/02664763.2019.1707485
_version_ 1784694560531677184
author Qasim, Muhammad
Kibria, B. M. G.
Månsson, Kristofer
Sjölander, Pär
author_facet Qasim, Muhammad
Kibria, B. M. G.
Månsson, Kristofer
Sjölander, Pär
author_sort Qasim, Muhammad
collection PubMed
description This paper considers the estimation of parameters for the Poisson regression model in the presence of high, but imperfect multicollinearity. To mitigate this problem, we suggest using the Poisson Liu Regression Estimator (PLRE) and propose some new approaches to estimate this shrinkage parameter. The small sample statistical properties of these estimators are systematically scrutinized using Monte Carlo simulations. To evaluate the performance of these estimators, we assess the Mean Square Errors (MSE) and the Mean Absolute Percentage Errors (MAPE). The simulation results clearly illustrate the benefit of the methods of estimating these types of shrinkage parameters in finite samples. Finally, we illustrate the empirical relevance of our newly proposed methods using an empirically relevant application. Thus, in summary, via simulations of empirically relevant parameter values, and by a standard empirical application, it is clearly demonstrated that our technique exhibits more precise estimators, compared to traditional techniques – at least when multicollinearity exist among the regressors.
format Online
Article
Text
id pubmed-9041668
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-90416682022-06-14 A new Poisson Liu Regression Estimator: method and application Qasim, Muhammad Kibria, B. M. G. Månsson, Kristofer Sjölander, Pär J Appl Stat Articles This paper considers the estimation of parameters for the Poisson regression model in the presence of high, but imperfect multicollinearity. To mitigate this problem, we suggest using the Poisson Liu Regression Estimator (PLRE) and propose some new approaches to estimate this shrinkage parameter. The small sample statistical properties of these estimators are systematically scrutinized using Monte Carlo simulations. To evaluate the performance of these estimators, we assess the Mean Square Errors (MSE) and the Mean Absolute Percentage Errors (MAPE). The simulation results clearly illustrate the benefit of the methods of estimating these types of shrinkage parameters in finite samples. Finally, we illustrate the empirical relevance of our newly proposed methods using an empirically relevant application. Thus, in summary, via simulations of empirically relevant parameter values, and by a standard empirical application, it is clearly demonstrated that our technique exhibits more precise estimators, compared to traditional techniques – at least when multicollinearity exist among the regressors. Taylor & Francis 2019-12-27 /pmc/articles/PMC9041668/ /pubmed/35706835 http://dx.doi.org/10.1080/02664763.2019.1707485 Text en © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
spellingShingle Articles
Qasim, Muhammad
Kibria, B. M. G.
Månsson, Kristofer
Sjölander, Pär
A new Poisson Liu Regression Estimator: method and application
title A new Poisson Liu Regression Estimator: method and application
title_full A new Poisson Liu Regression Estimator: method and application
title_fullStr A new Poisson Liu Regression Estimator: method and application
title_full_unstemmed A new Poisson Liu Regression Estimator: method and application
title_short A new Poisson Liu Regression Estimator: method and application
title_sort new poisson liu regression estimator: method and application
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041668/
https://www.ncbi.nlm.nih.gov/pubmed/35706835
http://dx.doi.org/10.1080/02664763.2019.1707485
work_keys_str_mv AT qasimmuhammad anewpoissonliuregressionestimatormethodandapplication
AT kibriabmg anewpoissonliuregressionestimatormethodandapplication
AT manssonkristofer anewpoissonliuregressionestimatormethodandapplication
AT sjolanderpar anewpoissonliuregressionestimatormethodandapplication
AT qasimmuhammad newpoissonliuregressionestimatormethodandapplication
AT kibriabmg newpoissonliuregressionestimatormethodandapplication
AT manssonkristofer newpoissonliuregressionestimatormethodandapplication
AT sjolanderpar newpoissonliuregressionestimatormethodandapplication