Cargando…
A new Poisson Liu Regression Estimator: method and application
This paper considers the estimation of parameters for the Poisson regression model in the presence of high, but imperfect multicollinearity. To mitigate this problem, we suggest using the Poisson Liu Regression Estimator (PLRE) and propose some new approaches to estimate this shrinkage parameter. Th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041668/ https://www.ncbi.nlm.nih.gov/pubmed/35706835 http://dx.doi.org/10.1080/02664763.2019.1707485 |
_version_ | 1784694560531677184 |
---|---|
author | Qasim, Muhammad Kibria, B. M. G. Månsson, Kristofer Sjölander, Pär |
author_facet | Qasim, Muhammad Kibria, B. M. G. Månsson, Kristofer Sjölander, Pär |
author_sort | Qasim, Muhammad |
collection | PubMed |
description | This paper considers the estimation of parameters for the Poisson regression model in the presence of high, but imperfect multicollinearity. To mitigate this problem, we suggest using the Poisson Liu Regression Estimator (PLRE) and propose some new approaches to estimate this shrinkage parameter. The small sample statistical properties of these estimators are systematically scrutinized using Monte Carlo simulations. To evaluate the performance of these estimators, we assess the Mean Square Errors (MSE) and the Mean Absolute Percentage Errors (MAPE). The simulation results clearly illustrate the benefit of the methods of estimating these types of shrinkage parameters in finite samples. Finally, we illustrate the empirical relevance of our newly proposed methods using an empirically relevant application. Thus, in summary, via simulations of empirically relevant parameter values, and by a standard empirical application, it is clearly demonstrated that our technique exhibits more precise estimators, compared to traditional techniques – at least when multicollinearity exist among the regressors. |
format | Online Article Text |
id | pubmed-9041668 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-90416682022-06-14 A new Poisson Liu Regression Estimator: method and application Qasim, Muhammad Kibria, B. M. G. Månsson, Kristofer Sjölander, Pär J Appl Stat Articles This paper considers the estimation of parameters for the Poisson regression model in the presence of high, but imperfect multicollinearity. To mitigate this problem, we suggest using the Poisson Liu Regression Estimator (PLRE) and propose some new approaches to estimate this shrinkage parameter. The small sample statistical properties of these estimators are systematically scrutinized using Monte Carlo simulations. To evaluate the performance of these estimators, we assess the Mean Square Errors (MSE) and the Mean Absolute Percentage Errors (MAPE). The simulation results clearly illustrate the benefit of the methods of estimating these types of shrinkage parameters in finite samples. Finally, we illustrate the empirical relevance of our newly proposed methods using an empirically relevant application. Thus, in summary, via simulations of empirically relevant parameter values, and by a standard empirical application, it is clearly demonstrated that our technique exhibits more precise estimators, compared to traditional techniques – at least when multicollinearity exist among the regressors. Taylor & Francis 2019-12-27 /pmc/articles/PMC9041668/ /pubmed/35706835 http://dx.doi.org/10.1080/02664763.2019.1707485 Text en © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
spellingShingle | Articles Qasim, Muhammad Kibria, B. M. G. Månsson, Kristofer Sjölander, Pär A new Poisson Liu Regression Estimator: method and application |
title | A new Poisson Liu Regression Estimator: method and application |
title_full | A new Poisson Liu Regression Estimator: method and application |
title_fullStr | A new Poisson Liu Regression Estimator: method and application |
title_full_unstemmed | A new Poisson Liu Regression Estimator: method and application |
title_short | A new Poisson Liu Regression Estimator: method and application |
title_sort | new poisson liu regression estimator: method and application |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041668/ https://www.ncbi.nlm.nih.gov/pubmed/35706835 http://dx.doi.org/10.1080/02664763.2019.1707485 |
work_keys_str_mv | AT qasimmuhammad anewpoissonliuregressionestimatormethodandapplication AT kibriabmg anewpoissonliuregressionestimatormethodandapplication AT manssonkristofer anewpoissonliuregressionestimatormethodandapplication AT sjolanderpar anewpoissonliuregressionestimatormethodandapplication AT qasimmuhammad newpoissonliuregressionestimatormethodandapplication AT kibriabmg newpoissonliuregressionestimatormethodandapplication AT manssonkristofer newpoissonliuregressionestimatormethodandapplication AT sjolanderpar newpoissonliuregressionestimatormethodandapplication |