Cargando…
Evaluation of robust outlier detection methods for zero-inflated complex data
Outlier detection can be seen as a pre-processing step for locating data points in a data sample, which do not conform to the majority of observations. Various techniques and methods for outlier detection can be found in the literature dealing with different types of data. However, many data sets ar...
Autores principales: | Templ, M., Gussenbauer, J., Filzmoser, P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041731/ https://www.ncbi.nlm.nih.gov/pubmed/35707025 http://dx.doi.org/10.1080/02664763.2019.1671961 |
Ejemplares similares
-
GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data
por: Chen, Li, et al.
Publicado: (2018) -
Robust subspace methods for outlier detection in genomic data circumvents the curse of dimensionality
por: Shetta, Omar, et al.
Publicado: (2020) -
A comparison of zero-inflated and hurdle models for modeling zero-inflated count data
por: Feng, Cindy Xin
Publicado: (2021) -
Evaluation of negative binomial and zero-inflated negative binomial models for the analysis of zero-inflated count data: application to the telemedicine for children with medical complexity trial
por: Lee, Kyung Hyun, et al.
Publicado: (2023) -
On the equivalence of one‐inflated zero‐truncated and zero‐truncated one‐inflated count data likelihoods
por: Böhning, Dankmar
Publicado: (2022)