Cargando…
Multiple imputation of longitudinal categorical data through bayesian mixture latent Markov models
Standard latent class modeling has recently been shown to provide a flexible tool for the multiple imputation (MI) of missing categorical covariates in cross-sectional studies. This article introduces an analogous tool for longitudinal studies: MI using Bayesian mixture Latent Markov (BMLM) models....
Autores principales: | Vidotto, Davide, Vermunt, Jeroen K., Van Deun, Katrijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041790/ https://www.ncbi.nlm.nih.gov/pubmed/35707130 http://dx.doi.org/10.1080/02664763.2019.1692794 |
Ejemplares similares
-
Bayesian Multilevel Latent Class Models for the Multiple Imputation of Nested Categorical Data
por: Vidotto, Davide, et al.
Publicado: (2018) -
Latent Markov Latent Trait Analysis for Exploring Measurement Model
Changes in Intensive Longitudinal Data
por: Vogelsmeier, Leonie V. D. E., et al.
Publicado: (2020) -
Latent Markov models for longitudinal data
por: Bartolucci, Francesco, et al.
Publicado: (2012) -
A nonparametric multiple imputation approach for missing categorical data
por: Zhou, Muhan, et al.
Publicado: (2017) -
A heteroscedastic hidden Markov mixture model for responses and categorized response times
por: Molenaar, Dylan, et al.
Publicado: (2019)