Cargando…
Negative ion formation and fragmentation upon dissociative electron attachment to the nicotinamide molecule
Nicotinamide (C(6)H(6)N(2)O) is a biologically relevant molecule. This compound has several important roles related to the anabolic and metabolic processes that take place in living organisms. It is also used as a radiosensitizer in tumor therapy. As a result of the interaction of high-energy radiat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041917/ https://www.ncbi.nlm.nih.gov/pubmed/35495526 http://dx.doi.org/10.1039/d1ra06083j |
_version_ | 1784694588823306240 |
---|---|
author | Ziegler, Patrick Pelc, Andrzej Arthur-Baidoo, Eugene Ameixa, Joao Ončák, Milan Denifl, Stephan |
author_facet | Ziegler, Patrick Pelc, Andrzej Arthur-Baidoo, Eugene Ameixa, Joao Ončák, Milan Denifl, Stephan |
author_sort | Ziegler, Patrick |
collection | PubMed |
description | Nicotinamide (C(6)H(6)N(2)O) is a biologically relevant molecule. This compound has several important roles related to the anabolic and metabolic processes that take place in living organisms. It is also used as a radiosensitizer in tumor therapy. As a result of the interaction of high-energy radiation with matter, low-energy electrons are also released, which can also interact with other molecules, forming several types of ions. In the present investigation, dissociative electron attachment to C(6)H(6)N(2)O has been studied in a crossed electron-molecular beams experiment in the electron energy range of about 0–15 eV. In the experiment, six anionic species were detected: C(6)H(5)N(2)O(−), C(5)H(4)N(−), NCO(−), O(−)/NH(2)(−), and CN(−), with NCO(−) being the most prominent anion. We also provide detailed computational results regarding the energetic thresholds and pathways of the respective dissociative electron attachment (DEA) channels. The experimental results are compared with the theoretical ones and on this basis, the possible DEA reactions for the formation of anions at a given resonance energy were assigned as well as the generation of neutrals fragments such as pyridine and its several derivatives and radicals are predicted. The pyridine ring seems to stay intact during the DEA process. |
format | Online Article Text |
id | pubmed-9041917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90419172022-04-28 Negative ion formation and fragmentation upon dissociative electron attachment to the nicotinamide molecule Ziegler, Patrick Pelc, Andrzej Arthur-Baidoo, Eugene Ameixa, Joao Ončák, Milan Denifl, Stephan RSC Adv Chemistry Nicotinamide (C(6)H(6)N(2)O) is a biologically relevant molecule. This compound has several important roles related to the anabolic and metabolic processes that take place in living organisms. It is also used as a radiosensitizer in tumor therapy. As a result of the interaction of high-energy radiation with matter, low-energy electrons are also released, which can also interact with other molecules, forming several types of ions. In the present investigation, dissociative electron attachment to C(6)H(6)N(2)O has been studied in a crossed electron-molecular beams experiment in the electron energy range of about 0–15 eV. In the experiment, six anionic species were detected: C(6)H(5)N(2)O(−), C(5)H(4)N(−), NCO(−), O(−)/NH(2)(−), and CN(−), with NCO(−) being the most prominent anion. We also provide detailed computational results regarding the energetic thresholds and pathways of the respective dissociative electron attachment (DEA) channels. The experimental results are compared with the theoretical ones and on this basis, the possible DEA reactions for the formation of anions at a given resonance energy were assigned as well as the generation of neutrals fragments such as pyridine and its several derivatives and radicals are predicted. The pyridine ring seems to stay intact during the DEA process. The Royal Society of Chemistry 2021-10-01 /pmc/articles/PMC9041917/ /pubmed/35495526 http://dx.doi.org/10.1039/d1ra06083j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Ziegler, Patrick Pelc, Andrzej Arthur-Baidoo, Eugene Ameixa, Joao Ončák, Milan Denifl, Stephan Negative ion formation and fragmentation upon dissociative electron attachment to the nicotinamide molecule |
title | Negative ion formation and fragmentation upon dissociative electron attachment to the nicotinamide molecule |
title_full | Negative ion formation and fragmentation upon dissociative electron attachment to the nicotinamide molecule |
title_fullStr | Negative ion formation and fragmentation upon dissociative electron attachment to the nicotinamide molecule |
title_full_unstemmed | Negative ion formation and fragmentation upon dissociative electron attachment to the nicotinamide molecule |
title_short | Negative ion formation and fragmentation upon dissociative electron attachment to the nicotinamide molecule |
title_sort | negative ion formation and fragmentation upon dissociative electron attachment to the nicotinamide molecule |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041917/ https://www.ncbi.nlm.nih.gov/pubmed/35495526 http://dx.doi.org/10.1039/d1ra06083j |
work_keys_str_mv | AT zieglerpatrick negativeionformationandfragmentationupondissociativeelectronattachmenttothenicotinamidemolecule AT pelcandrzej negativeionformationandfragmentationupondissociativeelectronattachmenttothenicotinamidemolecule AT arthurbaidooeugene negativeionformationandfragmentationupondissociativeelectronattachmenttothenicotinamidemolecule AT ameixajoao negativeionformationandfragmentationupondissociativeelectronattachmenttothenicotinamidemolecule AT oncakmilan negativeionformationandfragmentationupondissociativeelectronattachmenttothenicotinamidemolecule AT deniflstephan negativeionformationandfragmentationupondissociativeelectronattachmenttothenicotinamidemolecule |