Cargando…
An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst
We have reported an aerobic oxidation of primary and secondary alcohols to respective aldehydes and ketones using a bipyridyl-cinchona alkaloid based palladium catalytic system (PdAc-5) using oxygen at moderate pressure. The PdAc-5 catalyst was analysed using SEM, EDAX, and XPS analysis. The above c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042156/ https://www.ncbi.nlm.nih.gov/pubmed/35493605 http://dx.doi.org/10.1039/d1ra05855j |
_version_ | 1784694606864056320 |
---|---|
author | Cheedarala, Ravi Kumar Chidambaram, Ramasamy R. Siva, Ayyanar Song, Jung Il |
author_facet | Cheedarala, Ravi Kumar Chidambaram, Ramasamy R. Siva, Ayyanar Song, Jung Il |
author_sort | Cheedarala, Ravi Kumar |
collection | PubMed |
description | We have reported an aerobic oxidation of primary and secondary alcohols to respective aldehydes and ketones using a bipyridyl-cinchona alkaloid based palladium catalytic system (PdAc-5) using oxygen at moderate pressure. The PdAc-5 catalyst was analysed using SEM, EDAX, and XPS analysis. The above catalytic system is used in experiments for different oxidation systems which include different solvents, additives, and bases which are cheap, robust, non-toxic, and commercially available on the industrial bench. The obtained products are quite appreciable in both yield and selectivity (70–85%). In addition, numerous important studies, such as comparisons with various commercial catalysts, solvent systems, mixture of solvents, and catalyst mole%, were conducted using PdAc-5. The synthetic strategy of oxidation of alcohol into carbonyl compounds was well established and all the products were analysed using (1)H NMR, (13)CNMR and GC-mass analyses. |
format | Online Article Text |
id | pubmed-9042156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90421562022-04-28 An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst Cheedarala, Ravi Kumar Chidambaram, Ramasamy R. Siva, Ayyanar Song, Jung Il RSC Adv Chemistry We have reported an aerobic oxidation of primary and secondary alcohols to respective aldehydes and ketones using a bipyridyl-cinchona alkaloid based palladium catalytic system (PdAc-5) using oxygen at moderate pressure. The PdAc-5 catalyst was analysed using SEM, EDAX, and XPS analysis. The above catalytic system is used in experiments for different oxidation systems which include different solvents, additives, and bases which are cheap, robust, non-toxic, and commercially available on the industrial bench. The obtained products are quite appreciable in both yield and selectivity (70–85%). In addition, numerous important studies, such as comparisons with various commercial catalysts, solvent systems, mixture of solvents, and catalyst mole%, were conducted using PdAc-5. The synthetic strategy of oxidation of alcohol into carbonyl compounds was well established and all the products were analysed using (1)H NMR, (13)CNMR and GC-mass analyses. The Royal Society of Chemistry 2021-10-06 /pmc/articles/PMC9042156/ /pubmed/35493605 http://dx.doi.org/10.1039/d1ra05855j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Cheedarala, Ravi Kumar Chidambaram, Ramasamy R. Siva, Ayyanar Song, Jung Il An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst |
title | An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst |
title_full | An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst |
title_fullStr | An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst |
title_full_unstemmed | An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst |
title_short | An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst |
title_sort | aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042156/ https://www.ncbi.nlm.nih.gov/pubmed/35493605 http://dx.doi.org/10.1039/d1ra05855j |
work_keys_str_mv | AT cheedaralaravikumar anaerobicoxidationofalcoholsintocarbonylsynthonsusingbipyridylcinchonabasedpalladiumcatalyst AT chidambaramramasamyr anaerobicoxidationofalcoholsintocarbonylsynthonsusingbipyridylcinchonabasedpalladiumcatalyst AT sivaayyanar anaerobicoxidationofalcoholsintocarbonylsynthonsusingbipyridylcinchonabasedpalladiumcatalyst AT songjungil anaerobicoxidationofalcoholsintocarbonylsynthonsusingbipyridylcinchonabasedpalladiumcatalyst AT cheedaralaravikumar aerobicoxidationofalcoholsintocarbonylsynthonsusingbipyridylcinchonabasedpalladiumcatalyst AT chidambaramramasamyr aerobicoxidationofalcoholsintocarbonylsynthonsusingbipyridylcinchonabasedpalladiumcatalyst AT sivaayyanar aerobicoxidationofalcoholsintocarbonylsynthonsusingbipyridylcinchonabasedpalladiumcatalyst AT songjungil aerobicoxidationofalcoholsintocarbonylsynthonsusingbipyridylcinchonabasedpalladiumcatalyst |