Cargando…

The effects of green waste compost on soil N, P, K, and organic matter fractions in forestry soils: elemental analysis evaluation

We study the effects of green waste compost on soil fertility to provide a theoretical basis for accurately improving forestry soil quality. This study aims to investigate the effects of green waste compost on soil N, P, K, and soil organic matter (SOM) fractions using elemental and FTIR analyses. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Xiaojie, Sun, Xiangyang, Zhou, Wenjie, Zhang, Wei, Che, Feiwei, Li, Suyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042198/
https://www.ncbi.nlm.nih.gov/pubmed/35495542
http://dx.doi.org/10.1039/d1ra04986k
Descripción
Sumario:We study the effects of green waste compost on soil fertility to provide a theoretical basis for accurately improving forestry soil quality. This study aims to investigate the effects of green waste compost on soil N, P, K, and soil organic matter (SOM) fractions using elemental and FTIR analyses. Therefore, five fertilization treatments were set up for research, including mineral fertilization (M-fert), green waste compost fertilization (G-fert), standard rate of M-fert plus G-fert (GM-fert), half the standard rate of M-fert plus G-fert (1/2 GM-fert), and a control with no fertilizer addition (N-fert). The results showed that GM-fert treatment significantly increased the content of soil NH(4)–N, available phosphorus (AP), available potassium (AK), water soluble organic carbon (WSOC), humus (HE), and humic acid (HA), which were 8.53 ± 0.67, 76.1 ± 5.96, 168 ± 3.42, 0.152 ± 0.01, 5.64 ± 0.15, and 4.69 ± 0.21 mg kg(−1), respectively. The content of HA (36.7%, F = 7.55, P = 0.01) was positively correlated with the soil N, P, K, and the HA absorption peak. The relative intensities of the alcohol –OH, aliphatic –CH and carbohydrate C–O peaks showed the largest changes, which were 18.6 ± 0.56%, 13.1 ± 0.33%, and 16.3 ± 0.49%. –CH/C[double bond, length as m-dash]C (49.8%, F = 12.9, P < 0.01) was also significantly positively correlated with soil N, P, K. In conclusion, green waste compost significantly increased soil N, P, K, and HA in forestry soils, and the –CH/C[double bond, length as m-dash]C of HA was the main factor related to soil nutrients.