Cargando…

First-principles based theoretical calculations of atomic structures of hydroxyapatite surfaces and their charge states in contact with aqueous solutions

Surface charge states of biomaterials are often important for the adsorption of cells, proteins, and foreign ions on their surfaces, which should be clarified at the atomic and electronic levels. First-principles calculations were performed to reveal thermodynamically stable surface atomic structure...

Descripción completa

Detalles Bibliográficos
Autores principales: Saito, T., Yokoi, T., Nakamura, A., Matsunaga, K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042352/
https://www.ncbi.nlm.nih.gov/pubmed/35497313
http://dx.doi.org/10.1039/d1ra06311a
_version_ 1784694646719381504
author Saito, T.
Yokoi, T.
Nakamura, A.
Matsunaga, K.
author_facet Saito, T.
Yokoi, T.
Nakamura, A.
Matsunaga, K.
author_sort Saito, T.
collection PubMed
description Surface charge states of biomaterials are often important for the adsorption of cells, proteins, and foreign ions on their surfaces, which should be clarified at the atomic and electronic levels. First-principles calculations were performed to reveal thermodynamically stable surface atomic structures and their charge states in hydroxyapatite (HAp). Effects of aqueous environments on the surface stability were considered using an implicit solvation model. It was found that in an air atmosphere, stoichiometric {0001} and P-rich {101̄0} surfaces are energetically favorable, whereas in an aqueous solution, a Ca-rich {101̄0} surface is the most stable. This difference suggests that preferential surface structures strongly depend on chemical environments with and without aqueous solutions. Their surface potentials at zero charge were calculated to obtain the isoelectric points (pH(PZC)). pH(PZC) values for the {0001} surface and the Ca-rich {101̄0} surface were obtained to be 4.8 and 8.7, respectively. This indicates that in an aqueous solution at neutral pH, the {0001} and Ca-rich {101̄0} surfaces are negatively and positively charged, respectively. This trend agrees with experimental data from chromatography and zeta potential measurements. Our methodology based on first-principles calculations enables determining macroscopic charge states of HAp surfaces from atomic and electronic levels.
format Online
Article
Text
id pubmed-9042352
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90423522022-04-28 First-principles based theoretical calculations of atomic structures of hydroxyapatite surfaces and their charge states in contact with aqueous solutions Saito, T. Yokoi, T. Nakamura, A. Matsunaga, K. RSC Adv Chemistry Surface charge states of biomaterials are often important for the adsorption of cells, proteins, and foreign ions on their surfaces, which should be clarified at the atomic and electronic levels. First-principles calculations were performed to reveal thermodynamically stable surface atomic structures and their charge states in hydroxyapatite (HAp). Effects of aqueous environments on the surface stability were considered using an implicit solvation model. It was found that in an air atmosphere, stoichiometric {0001} and P-rich {101̄0} surfaces are energetically favorable, whereas in an aqueous solution, a Ca-rich {101̄0} surface is the most stable. This difference suggests that preferential surface structures strongly depend on chemical environments with and without aqueous solutions. Their surface potentials at zero charge were calculated to obtain the isoelectric points (pH(PZC)). pH(PZC) values for the {0001} surface and the Ca-rich {101̄0} surface were obtained to be 4.8 and 8.7, respectively. This indicates that in an aqueous solution at neutral pH, the {0001} and Ca-rich {101̄0} surfaces are negatively and positively charged, respectively. This trend agrees with experimental data from chromatography and zeta potential measurements. Our methodology based on first-principles calculations enables determining macroscopic charge states of HAp surfaces from atomic and electronic levels. The Royal Society of Chemistry 2021-10-20 /pmc/articles/PMC9042352/ /pubmed/35497313 http://dx.doi.org/10.1039/d1ra06311a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Saito, T.
Yokoi, T.
Nakamura, A.
Matsunaga, K.
First-principles based theoretical calculations of atomic structures of hydroxyapatite surfaces and their charge states in contact with aqueous solutions
title First-principles based theoretical calculations of atomic structures of hydroxyapatite surfaces and their charge states in contact with aqueous solutions
title_full First-principles based theoretical calculations of atomic structures of hydroxyapatite surfaces and their charge states in contact with aqueous solutions
title_fullStr First-principles based theoretical calculations of atomic structures of hydroxyapatite surfaces and their charge states in contact with aqueous solutions
title_full_unstemmed First-principles based theoretical calculations of atomic structures of hydroxyapatite surfaces and their charge states in contact with aqueous solutions
title_short First-principles based theoretical calculations of atomic structures of hydroxyapatite surfaces and their charge states in contact with aqueous solutions
title_sort first-principles based theoretical calculations of atomic structures of hydroxyapatite surfaces and their charge states in contact with aqueous solutions
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042352/
https://www.ncbi.nlm.nih.gov/pubmed/35497313
http://dx.doi.org/10.1039/d1ra06311a
work_keys_str_mv AT saitot firstprinciplesbasedtheoreticalcalculationsofatomicstructuresofhydroxyapatitesurfacesandtheirchargestatesincontactwithaqueoussolutions
AT yokoit firstprinciplesbasedtheoreticalcalculationsofatomicstructuresofhydroxyapatitesurfacesandtheirchargestatesincontactwithaqueoussolutions
AT nakamuraa firstprinciplesbasedtheoreticalcalculationsofatomicstructuresofhydroxyapatitesurfacesandtheirchargestatesincontactwithaqueoussolutions
AT matsunagak firstprinciplesbasedtheoreticalcalculationsofatomicstructuresofhydroxyapatitesurfacesandtheirchargestatesincontactwithaqueoussolutions