Cargando…
A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning
The COVID-19 outbreak poses a huge challenge to international public health. Reliable forecast of the number of cases is of great significance to the planning of health resources and the investigation and evaluation of the epidemic situation. The data-driven machine learning models can adapt to comp...
Autores principales: | Jin, Weiqiu, Dong, Shuqing, Yu, Chengqing, Luo, Qingquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042415/ https://www.ncbi.nlm.nih.gov/pubmed/35551008 http://dx.doi.org/10.1016/j.compbiomed.2022.105560 |
Ejemplares similares
-
AI in Healthcare: Time-Series Forecasting Using Statistical, Neural, and Ensemble Architectures
por: Kaushik, Shruti, et al.
Publicado: (2020) -
Applying Deep Neural Networks and Ensemble Machine Learning Methods to Forecast Airborne Ambrosia Pollen
por: Zewdie, Gebreab K., et al.
Publicado: (2019) -
DARE: Distill and Reinforce Ensemble Neural Networks for Climate-Domain Processing
por: Xiang, Kun, et al.
Publicado: (2023) -
Forecasting Corn Yield With Machine Learning Ensembles
por: Shahhosseini, Mohsen, et al.
Publicado: (2020) -
Hybrid Predictive Ensembles: Synergies Between Human and Computational Forecasts
por: Hong, Lu, et al.
Publicado: (2021)