Cargando…

Rapid SERS identification of methicillin-susceptible and methicillin-resistant Staphylococcus aureus via aptamer recognition and deep learning

Here, we report a label-free surface-enhanced Raman scattering (SERS) method for the rapid and accurate identification of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) based on aptamer-guided AgNP enhancement and convolutional neural netw...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shu, Dong, Hao, Shen, Wanzhu, Yang, Yong, Li, Zhigang, Liu, Yong, Wang, Chongwen, Gu, Bing, Zhang, Long
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042729/
https://www.ncbi.nlm.nih.gov/pubmed/35494737
http://dx.doi.org/10.1039/d1ra05778b
Descripción
Sumario:Here, we report a label-free surface-enhanced Raman scattering (SERS) method for the rapid and accurate identification of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) based on aptamer-guided AgNP enhancement and convolutional neural network (CNN) classification. Sixty clinical isolates of Staphylococcus aureus (S. aureus), comprising 30 strains of MSSA and 30 strains of MRSA were used to build the CNN classification model. The developed method exhibited 100% identification accuracy for MSSA and MRSA, and is thus a promising tool for the rapid detection of drug-sensitive and drug-resistant bacterial strains.