Cargando…
Chalcogenide optomemristors for multi-factor neuromorphic computation
Neuromorphic hardware that emulates biological computations is a key driver of progress in AI. For example, memristive technologies, including chalcogenide-based in-memory computing concepts, have been employed to dramatically accelerate and increase the efficiency of basic neural operations. Howeve...
Autores principales: | Sarwat, Syed Ghazi, Moraitis, Timoleon, Wright, C. David, Bhaskaran, Harish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042832/ https://www.ncbi.nlm.nih.gov/pubmed/35474061 http://dx.doi.org/10.1038/s41467-022-29870-9 |
Ejemplares similares
-
Neuromorphic computing with multi-memristive synapses
por: Boybat, Irem, et al.
Publicado: (2018) -
Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing
por: Kwon, Ki Chang, et al.
Publicado: (2022) -
Correction to: Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing
por: Kwon, Ki Chang, et al.
Publicado: (2022) -
A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder
por: Boi, Fabio, et al.
Publicado: (2016) -
Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems
por: Li, Yi, et al.
Publicado: (2014)