Cargando…

Variational quantum support vector machine based on [Formula: see text] matrix expansion and variational universal-quantum-state generator

We analyze a binary classification problem by using a support vector machine based on variational quantum-circuit model. We propose to solve a linear equation of the support vector machine by using a [Formula: see text] matrix expansion. In addition, it is shown that an arbitrary quantum state is pr...

Descripción completa

Detalles Bibliográficos
Autor principal: Ezawa, Motohiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042879/
https://www.ncbi.nlm.nih.gov/pubmed/35474101
http://dx.doi.org/10.1038/s41598-022-10677-z
Descripción
Sumario:We analyze a binary classification problem by using a support vector machine based on variational quantum-circuit model. We propose to solve a linear equation of the support vector machine by using a [Formula: see text] matrix expansion. In addition, it is shown that an arbitrary quantum state is prepared by optimizing a universal quantum circuit representing an arbitrary [Formula: see text] based on the steepest descent method. It may be a quantum generalization of Field-Programmable-Gate Array (FPGA).