Cargando…
Learning aerodynamics with neural network
We propose a neural network (NN) architecture, the Element Spatial Convolution Neural Network (ESCNN), towards the airfoil lift coefficient prediction task. The ESCNN outperforms existing state-of-the-art NNs in terms of prediction accuracy, with two orders of less parameters. We further investigate...
Autores principales: | Peng, Wenhui, Zhang, Yao, Laurendeau, Eric, Desmarais, Michel C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043210/ https://www.ncbi.nlm.nih.gov/pubmed/35473951 http://dx.doi.org/10.1038/s41598-022-10737-4 |
Ejemplares similares
-
Multi-Fidelity Aerodynamic Data Fusion with a Deep Neural Network Modeling Method
por: He, Lei, et al.
Publicado: (2020) -
Axial turbine aerodynamics for aero-engines: flow analysis and aerodynamics design
por: Zou, Zhengping, et al.
Publicado: (2018) -
Aerodynamics of the airplane
por: Millikan, Clark B.
Publicado: (1941) -
Environmental aerodynamics /
por: Scorer, R. S. (Richard Segar), 1919-
Publicado: (1978) -
Natural aerodynamics
por: Scorer, R S
Publicado: (1958)