Cargando…
4-Pentenoyl-isoleucyl-chitosan oligosaccharide and acrylamide functional monomer-dependent hybrid bilayer molecularly imprinted membrane for sensitive electrochemical sensing of bisphenol A
In this work, an electrochemical sensor was designed for trace monitoring of bisphenol A (BPA) by decorating a hybrid bilayer molecularly imprinted membrane (MIM) on a multi-walled carbon nanotube-modified glassy carbon electrode. When BPA in the MIM was eluted, a composite molecularly imprinted ele...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043540/ https://www.ncbi.nlm.nih.gov/pubmed/35494341 http://dx.doi.org/10.1039/d1ra04924k |
Sumario: | In this work, an electrochemical sensor was designed for trace monitoring of bisphenol A (BPA) by decorating a hybrid bilayer molecularly imprinted membrane (MIM) on a multi-walled carbon nanotube-modified glassy carbon electrode. When BPA in the MIM was eluted, a composite molecularly imprinted electrochemical sensor was constructed. Under optimal conditions, the developed sensor showed two linear relationships between ΔI(p) and BPA concentration in the range of 0.04 μM to 8 μM, as well as good selectivity and stability, and was also applied to detect BPA in water samples with desirable recoveries ranging from 92.0% to 107.0%. |
---|