Cargando…

A novel electroactive plasticized polymer actuator based on chlorinated polyvinyl chloride gel

Plasticized poly (vinyl chloride) (PVC) gel is a promising electroactive polymer material for soft actuators and sensors, and it has attracted extensive attention and interest in multi-disciplinary fields. Chlorinated polyvinyl chloride (CPVC) has enhanced mechanical and chemical properties and show...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yi, Sun, Bo, Feng, Xuxin, Guo, Mingfei, Li, Yanbiao, Hashimoto, Minoru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043622/
https://www.ncbi.nlm.nih.gov/pubmed/35494366
http://dx.doi.org/10.1039/d1ra07245e
Descripción
Sumario:Plasticized poly (vinyl chloride) (PVC) gel is a promising electroactive polymer material for soft actuators and sensors, and it has attracted extensive attention and interest in multi-disciplinary fields. Chlorinated polyvinyl chloride (CPVC) has enhanced mechanical and chemical properties and shows a promising potential for fabricating gel materials for electroactive polymer gel actuators. Thus, we proposed a novel soft actuator based on CPVC gels. We studied the properties of CPVC gels with various technologies, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) analysis, thermogravimetric analysis (TGA), etc. Furthermore, CPVC gel actuators were fabricated and the influence of membrane thickness and plasticizer content on the basic characteristics was investigated. The experimental results show that the CPVC gel actuator with a higher content of DBA has a better strain than that of the actuator with lower amount of DBA despite the membrane thickness. With the same ratio of DBA, the CPVC gel actuator has a better performance than the traditional PVC gel actuator under a low applied load. The maximum strain and stress of the CPVC gel (CPVC : DBA = 1 : 2.5) actuator are 9% and 0.12 MPa respectively at 400 V, which reaches the same level of the PVC gel actuator with higher content of DBA (PVC : DBA = 1 : 4). These results demonstrate a good potential of the proposed CPVC gel soft actuator for practical application.