Cargando…
Reawakening GDNF's regenerative past in mice and humans
The ability of an animal to regenerate lost tissue and body parts has obviously life-saving implications. Understanding how this ability became restricted or active in specific animal lineages will help us understand our own regeneration. According to phylogenic analysis, the glial cell line-derived...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society for Regenerative Medicine
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043678/ https://www.ncbi.nlm.nih.gov/pubmed/35509264 http://dx.doi.org/10.1016/j.reth.2022.03.008 |
_version_ | 1784694934687711232 |
---|---|
author | Samos, Andres McGaughey, Vanessa Rieger, Sandra Lisse, Thomas S. |
author_facet | Samos, Andres McGaughey, Vanessa Rieger, Sandra Lisse, Thomas S. |
author_sort | Samos, Andres |
collection | PubMed |
description | The ability of an animal to regenerate lost tissue and body parts has obviously life-saving implications. Understanding how this ability became restricted or active in specific animal lineages will help us understand our own regeneration. According to phylogenic analysis, the glial cell line-derived neurotrophic factor (GDNF) signaling pathway, but not other family members, is conserved in axolotls, a salamander with remarkable regenerative capacity. Furthermore, comparing the pro-regenerative Spiny mouse to its less regenerative descendant, the House mouse, revealed that the GDNF signaling pathway, but not other family members, was induced in regenerating Spiny mice. According to GDNF receptor expression analysis, GDNF may promote hair follicle neogenesis – an important feature of skin regeneration – by determining the fate of dermal fibroblasts as part of new hair follicles. These findings support the idea that GDNF treatment will promote skin regeneration in humans by demonstrating the GDNF signaling pathway's ancestral and cellular nature. |
format | Online Article Text |
id | pubmed-9043678 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Japanese Society for Regenerative Medicine |
record_format | MEDLINE/PubMed |
spelling | pubmed-90436782022-05-03 Reawakening GDNF's regenerative past in mice and humans Samos, Andres McGaughey, Vanessa Rieger, Sandra Lisse, Thomas S. Regen Ther Commentary The ability of an animal to regenerate lost tissue and body parts has obviously life-saving implications. Understanding how this ability became restricted or active in specific animal lineages will help us understand our own regeneration. According to phylogenic analysis, the glial cell line-derived neurotrophic factor (GDNF) signaling pathway, but not other family members, is conserved in axolotls, a salamander with remarkable regenerative capacity. Furthermore, comparing the pro-regenerative Spiny mouse to its less regenerative descendant, the House mouse, revealed that the GDNF signaling pathway, but not other family members, was induced in regenerating Spiny mice. According to GDNF receptor expression analysis, GDNF may promote hair follicle neogenesis – an important feature of skin regeneration – by determining the fate of dermal fibroblasts as part of new hair follicles. These findings support the idea that GDNF treatment will promote skin regeneration in humans by demonstrating the GDNF signaling pathway's ancestral and cellular nature. Japanese Society for Regenerative Medicine 2022-04-19 /pmc/articles/PMC9043678/ /pubmed/35509264 http://dx.doi.org/10.1016/j.reth.2022.03.008 Text en © 2022 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Commentary Samos, Andres McGaughey, Vanessa Rieger, Sandra Lisse, Thomas S. Reawakening GDNF's regenerative past in mice and humans |
title | Reawakening GDNF's regenerative past in mice and humans |
title_full | Reawakening GDNF's regenerative past in mice and humans |
title_fullStr | Reawakening GDNF's regenerative past in mice and humans |
title_full_unstemmed | Reawakening GDNF's regenerative past in mice and humans |
title_short | Reawakening GDNF's regenerative past in mice and humans |
title_sort | reawakening gdnf's regenerative past in mice and humans |
topic | Commentary |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043678/ https://www.ncbi.nlm.nih.gov/pubmed/35509264 http://dx.doi.org/10.1016/j.reth.2022.03.008 |
work_keys_str_mv | AT samosandres reawakeninggdnfsregenerativepastinmiceandhumans AT mcgaugheyvanessa reawakeninggdnfsregenerativepastinmiceandhumans AT riegersandra reawakeninggdnfsregenerativepastinmiceandhumans AT lissethomass reawakeninggdnfsregenerativepastinmiceandhumans |