Cargando…
Construction and Multiple Feature Classification Based on a High-Order Functional Hypernetwork on fMRI Data
Resting-state functional connectivity hypernetworks, in which multiple nodes can be connected, are an effective technique for diagnosing brain disease and performing classification research. Conventional functional hypernetworks can characterize the complex interactions within the human brain in a s...
Autores principales: | Li, Yao, Li, Qifan, Li, Tao, Zhou, Zijing, Xu, Yong, Yang, Yanli, Chen, Junjie, Guo, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043754/ https://www.ncbi.nlm.nih.gov/pubmed/35495049 http://dx.doi.org/10.3389/fnins.2022.848363 |
Ejemplares similares
-
Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset
por: Li, Yao, et al.
Publicado: (2020) -
Corrigendum: Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset
por: Li, Yao, et al.
Publicado: (2020) -
The evolutionary extortion game of multiple groups in hypernetworks
por: Shen, Aizhong, et al.
Publicado: (2022) -
Machine Learning Classification Combining Multiple Features of A Hyper-Network of fMRI Data in Alzheimer's Disease
por: Guo, Hao, et al.
Publicado: (2017) -
Emergent hypernetworks in weakly coupled oscillators
por: Nijholt, Eddie, et al.
Publicado: (2022)