Cargando…
Machine Learning Models for Diagnosis of Parkinson’s Disease Using Multiple Structural Magnetic Resonance Imaging Features
PURPOSE: This study aimed to develop machine learning models for the diagnosis of Parkinson’s disease (PD) using multiple structural magnetic resonance imaging (MRI) features and validate their performance. METHODS: Brain structural MRI scans of 60 patients with PD and 56 normal controls (NCs) were...
Autores principales: | Ya, Yang, Ji, Lirong, Jia, Yujing, Zou, Nan, Jiang, Zhen, Yin, Hongkun, Mao, Chengjie, Luo, Weifeng, Wang, Erlei, Fan, Guohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043762/ https://www.ncbi.nlm.nih.gov/pubmed/35493923 http://dx.doi.org/10.3389/fnagi.2022.808520 |
Ejemplares similares
-
Abnormal Topological Organization of Sulcal Depth-Based Structural Covariance Networks in Parkinson's Disease
por: Wang, Erlei, et al.
Publicado: (2021) -
Magnetic Resonance Imaging Markers for Cognitive Impairment in Parkinson’s Disease: Current View
por: Hou, Yanbing, et al.
Publicado: (2022) -
Neuromelanin magnetic resonance imaging of substantia nigra and locus coeruleus in Parkinson’s disease with freezing of gait
por: Wang, Shangpei, et al.
Publicado: (2023) -
Recognition of Freezing of Gait in Parkinson’s Disease Based on Machine Vision
por: Li, Wendan, et al.
Publicado: (2022) -
The complex interplay of hypoxia and sleep disturbance in gray matter structure alterations in obstructive sleep apnea patients
por: Wang, Jing, et al.
Publicado: (2023)