Cargando…
Excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol–quinoline
The excited-state intramolecular proton transfer (ESIPT) reaction of two phenol–quinoline molecules (namely PQ-1 and PQ-2) were investigated using time-dependent density functional theory. The five-(six-) membered-ring carbocycle between the phenol and quinolone moieties in PQ-1 (PQ-2) actually caus...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043822/ https://www.ncbi.nlm.nih.gov/pubmed/35496430 http://dx.doi.org/10.1039/d1ra07042h |
_version_ | 1784694968138334208 |
---|---|
author | Liu, Yu-Hui Yu, Shi-Bo Peng, Ya-Jing Wang, Chen-Wen Zhu, Chaoyuan Lin, Sheng-Hsien |
author_facet | Liu, Yu-Hui Yu, Shi-Bo Peng, Ya-Jing Wang, Chen-Wen Zhu, Chaoyuan Lin, Sheng-Hsien |
author_sort | Liu, Yu-Hui |
collection | PubMed |
description | The excited-state intramolecular proton transfer (ESIPT) reaction of two phenol–quinoline molecules (namely PQ-1 and PQ-2) were investigated using time-dependent density functional theory. The five-(six-) membered-ring carbocycle between the phenol and quinolone moieties in PQ-1 (PQ-2) actually causes a relatively loose (tight) hydrogen bond, which results in a small-barrier (barrier-less) on an excited-state potential energy surface with a slow (fast) ESIPT process with (without) involving the skeletal deformation motion up to the electronic excitation. The skeletal deformation motion that is induced from the largest vibronic excitation with low frequency can assist in decreasing the donor–acceptor distance and lowering the reaction barrier in the excited-state potential energy surface, and thus effectively enhance the ESIPT reaction for PQ-1. The Franck–Condon simulation indicated that the low-frequency mode with vibronic excitation 0 → 1′ is an original source of the skeletal deformation vibration. The present simulation presents physical insights for phenol–quinoline molecules in which relatively tight or loose hydrogen bonds can influence the ESIPT reaction process with and without the assistance of the skeletal deformation motion. |
format | Online Article Text |
id | pubmed-9043822 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90438222022-04-28 Excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol–quinoline Liu, Yu-Hui Yu, Shi-Bo Peng, Ya-Jing Wang, Chen-Wen Zhu, Chaoyuan Lin, Sheng-Hsien RSC Adv Chemistry The excited-state intramolecular proton transfer (ESIPT) reaction of two phenol–quinoline molecules (namely PQ-1 and PQ-2) were investigated using time-dependent density functional theory. The five-(six-) membered-ring carbocycle between the phenol and quinolone moieties in PQ-1 (PQ-2) actually causes a relatively loose (tight) hydrogen bond, which results in a small-barrier (barrier-less) on an excited-state potential energy surface with a slow (fast) ESIPT process with (without) involving the skeletal deformation motion up to the electronic excitation. The skeletal deformation motion that is induced from the largest vibronic excitation with low frequency can assist in decreasing the donor–acceptor distance and lowering the reaction barrier in the excited-state potential energy surface, and thus effectively enhance the ESIPT reaction for PQ-1. The Franck–Condon simulation indicated that the low-frequency mode with vibronic excitation 0 → 1′ is an original source of the skeletal deformation vibration. The present simulation presents physical insights for phenol–quinoline molecules in which relatively tight or loose hydrogen bonds can influence the ESIPT reaction process with and without the assistance of the skeletal deformation motion. The Royal Society of Chemistry 2021-11-19 /pmc/articles/PMC9043822/ /pubmed/35496430 http://dx.doi.org/10.1039/d1ra07042h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Liu, Yu-Hui Yu, Shi-Bo Peng, Ya-Jing Wang, Chen-Wen Zhu, Chaoyuan Lin, Sheng-Hsien Excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol–quinoline |
title | Excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol–quinoline |
title_full | Excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol–quinoline |
title_fullStr | Excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol–quinoline |
title_full_unstemmed | Excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol–quinoline |
title_short | Excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol–quinoline |
title_sort | excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol–quinoline |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043822/ https://www.ncbi.nlm.nih.gov/pubmed/35496430 http://dx.doi.org/10.1039/d1ra07042h |
work_keys_str_mv | AT liuyuhui excitedstateintramolecularprotontransferwithandwithouttheassistanceofvibronictransitioninducedskeletaldeformationinphenolquinoline AT yushibo excitedstateintramolecularprotontransferwithandwithouttheassistanceofvibronictransitioninducedskeletaldeformationinphenolquinoline AT pengyajing excitedstateintramolecularprotontransferwithandwithouttheassistanceofvibronictransitioninducedskeletaldeformationinphenolquinoline AT wangchenwen excitedstateintramolecularprotontransferwithandwithouttheassistanceofvibronictransitioninducedskeletaldeformationinphenolquinoline AT zhuchaoyuan excitedstateintramolecularprotontransferwithandwithouttheassistanceofvibronictransitioninducedskeletaldeformationinphenolquinoline AT linshenghsien excitedstateintramolecularprotontransferwithandwithouttheassistanceofvibronictransitioninducedskeletaldeformationinphenolquinoline |