Cargando…
A Regularized Multi-Task Learning Approach for Cell Type Detection in Single-Cell RNA Sequencing Data
Cell type prediction is one of the most challenging goals in single-cell RNA sequencing (scRNA-seq) data. Existing methods use unsupervised learning to identify signature genes in each cluster, followed by a literature survey to look up those genes for assigning cell types. However, finding potentia...
Autores principales: | Upadhyay, Piu, Ray, Sumanta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043858/ https://www.ncbi.nlm.nih.gov/pubmed/35495159 http://dx.doi.org/10.3389/fgene.2022.788832 |
Ejemplares similares
-
Pan-cancer classification by regularized multi-task learning
por: Hossain, Sk Md Mosaddek, et al.
Publicado: (2021) -
RgCop-A regularized copula based method for gene selection in single-cell RNA-seq data
por: Lall, Snehalika, et al.
Publicado: (2021) -
Reproducibility of Methods to Detect Differentially Expressed Genes from Single-Cell RNA Sequencing
por: Mou, Tian, et al.
Publicado: (2020) -
EC-PGMGR: Ensemble Clustering Based on Probability Graphical Model With Graph Regularization for Single-Cell RNA-seq Data
por: Zhu, Yuan, et al.
Publicado: (2020) -
A Systematic Evaluation of Supervised Machine Learning Algorithms for Cell Phenotype Classification Using Single-Cell RNA Sequencing Data
por: Cao, Xiaowen, et al.
Publicado: (2022)