Cargando…
Non-destructive Plant Biomass Monitoring With High Spatio-Temporal Resolution via Proximal RGB-D Imagery and End-to-End Deep Learning
Plant breeders, scientists, and commercial producers commonly use growth rate as an integrated signal of crop productivity and stress. Plant growth monitoring is often done destructively via growth rate estimation by harvesting plants at different growth stages and simply weighing each individual pl...
Autores principales: | Buxbaum, Nicolas, Lieth, Johann Heinrich, Earles, Mason |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043900/ https://www.ncbi.nlm.nih.gov/pubmed/35498682 http://dx.doi.org/10.3389/fpls.2022.758818 |
Ejemplares similares
-
Aboveground biomass estimation of wetland vegetation at the species level using unoccupied aerial vehicle RGB imagery
por: Zhou, Rui, et al.
Publicado: (2023) -
Assessment of intertidal seaweed biomass based on RGB imagery
por: Chen, Jianqu, et al.
Publicado: (2022) -
Deep Learning Applied to Phenotyping of Biomass in Forages with UAV-Based RGB Imagery
por: Castro, Wellington, et al.
Publicado: (2020) -
TasselNetV2+: A Fast Implementation for High-Throughput Plant Counting From High-Resolution RGB Imagery
por: Lu, Hao, et al.
Publicado: (2020) -
Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery
por: Li, Jie, et al.
Publicado: (2023)