Cargando…
Classification of crystal structures using electron diffraction patterns with a deep convolutional neural network
Investigations have been made to explore the applicability of an off-the-shelf deep convolutional neural network (DCNN) architecture, residual neural network (ResNet), to the classification of the crystal structure of materials using electron diffraction patterns without prior knowledge of the mater...
Autores principales: | Ra, Moonsoo, Boo, Younggun, Jeong, Jae Min, Batts-Etseg, Jargalsaikhan, Jeong, Jinha, Lee, Woong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043913/ https://www.ncbi.nlm.nih.gov/pubmed/35493237 http://dx.doi.org/10.1039/d1ra07156d |
Ejemplares similares
-
Classification of crystallization outcomes using deep convolutional neural networks
por: Bruno, Andrew E., et al.
Publicado: (2018) -
Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification
por: Chang, Julie, et al.
Publicado: (2018) -
Classification of crystal structure using a convolutional neural network
por: Park, Woon Bae, et al.
Publicado: (2017) -
Gas Classification Using Deep Convolutional Neural Networks
por: Peng, Pai, et al.
Publicado: (2018) -
Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: A pilot study
por: Lee, Jae-Hong, et al.
Publicado: (2020)