Cargando…

Hydroxyl ions: flexible tailoring of Cu(2)O crystal morphology

The precise control architectures of Cu(2)O crystals are very crucial, which have a significant influence on their various performances. Herein, Cu(2)O crystals with diverse architectures were achieved via finely adjusting the concentration of NaOH. The intriguing results showed that the addition of...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xiaodong, Li, Jia, Yao, Jianhua, Ren, Tianrui, Zhang, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043987/
https://www.ncbi.nlm.nih.gov/pubmed/35498058
http://dx.doi.org/10.1039/d1ra03296h
Descripción
Sumario:The precise control architectures of Cu(2)O crystals are very crucial, which have a significant influence on their various performances. Herein, Cu(2)O crystals with diverse architectures were achieved via finely adjusting the concentration of NaOH. The intriguing results showed that the addition of specific amounts of OH(−) to the solution was crucial to tailor the morphology and size of the resulting microcrystals. We observed the evolution of the shapes of the Cu(2)O microcrystals, which change from a rhombic dodecahedron to spherical, octahedral-like and then to hexapod upon the increase in the NaOH concentration. Adjusting the volume of NaOH added provides a means to vary the particle size. Furthermore, density functional theory (DFT) may reveal that OH(−) ions serve as an efficient coordination agent selectively adsorbing onto different crystal faces of Cu(2)O crystals modifying the crystal energies, inducing the structure anisotropy on crystal growth. This work reveals that an effective and facile strategy has been developed for morphology-control of Cu(2)O crystals.