Cargando…

A network-based approach to identify expression modules underlying rejection in pediatric liver transplantation

Selecting the right immunosuppressant to ensure rejection-free outcomes poses unique challenges in pediatric liver transplant (LT) recipients. A molecular predictor can comprehensively address these challenges. Currently, there are no well-validated blood-based biomarkers for pediatric LT recipients...

Descripción completa

Detalles Bibliográficos
Autores principales: Ningappa, Mylarappa, Rahman, Syed A., Higgs, Brandon W., Ashokkumar, Chethan S., Sahni, Nidhi, Sindhi, Rakesh, Das, Jishnu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044102/
https://www.ncbi.nlm.nih.gov/pubmed/35492246
http://dx.doi.org/10.1016/j.xcrm.2022.100605
_version_ 1784695033010585600
author Ningappa, Mylarappa
Rahman, Syed A.
Higgs, Brandon W.
Ashokkumar, Chethan S.
Sahni, Nidhi
Sindhi, Rakesh
Das, Jishnu
author_facet Ningappa, Mylarappa
Rahman, Syed A.
Higgs, Brandon W.
Ashokkumar, Chethan S.
Sahni, Nidhi
Sindhi, Rakesh
Das, Jishnu
author_sort Ningappa, Mylarappa
collection PubMed
description Selecting the right immunosuppressant to ensure rejection-free outcomes poses unique challenges in pediatric liver transplant (LT) recipients. A molecular predictor can comprehensively address these challenges. Currently, there are no well-validated blood-based biomarkers for pediatric LT recipients before or after LT. Here, we discover and validate separate pre- and post-LT transcriptomic signatures of rejection. Using an integrative machine learning approach, we combine transcriptomics data with the reference high-quality human protein interactome to identify network module signatures, which underlie rejection. Unlike gene signatures, our approach is inherently multivariate and more robust to replication and captures the structure of the underlying network, encapsulating additive effects. We also identify, in an individual-specific manner, signatures that can be targeted by current anti-rejection drugs and other drugs that can be repurposed. Our approach can enable personalized adjustment of drug regimens for the dominant targetable pathways before and after LT in children.
format Online
Article
Text
id pubmed-9044102
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-90441022022-04-28 A network-based approach to identify expression modules underlying rejection in pediatric liver transplantation Ningappa, Mylarappa Rahman, Syed A. Higgs, Brandon W. Ashokkumar, Chethan S. Sahni, Nidhi Sindhi, Rakesh Das, Jishnu Cell Rep Med Article Selecting the right immunosuppressant to ensure rejection-free outcomes poses unique challenges in pediatric liver transplant (LT) recipients. A molecular predictor can comprehensively address these challenges. Currently, there are no well-validated blood-based biomarkers for pediatric LT recipients before or after LT. Here, we discover and validate separate pre- and post-LT transcriptomic signatures of rejection. Using an integrative machine learning approach, we combine transcriptomics data with the reference high-quality human protein interactome to identify network module signatures, which underlie rejection. Unlike gene signatures, our approach is inherently multivariate and more robust to replication and captures the structure of the underlying network, encapsulating additive effects. We also identify, in an individual-specific manner, signatures that can be targeted by current anti-rejection drugs and other drugs that can be repurposed. Our approach can enable personalized adjustment of drug regimens for the dominant targetable pathways before and after LT in children. Elsevier 2022-04-19 /pmc/articles/PMC9044102/ /pubmed/35492246 http://dx.doi.org/10.1016/j.xcrm.2022.100605 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Ningappa, Mylarappa
Rahman, Syed A.
Higgs, Brandon W.
Ashokkumar, Chethan S.
Sahni, Nidhi
Sindhi, Rakesh
Das, Jishnu
A network-based approach to identify expression modules underlying rejection in pediatric liver transplantation
title A network-based approach to identify expression modules underlying rejection in pediatric liver transplantation
title_full A network-based approach to identify expression modules underlying rejection in pediatric liver transplantation
title_fullStr A network-based approach to identify expression modules underlying rejection in pediatric liver transplantation
title_full_unstemmed A network-based approach to identify expression modules underlying rejection in pediatric liver transplantation
title_short A network-based approach to identify expression modules underlying rejection in pediatric liver transplantation
title_sort network-based approach to identify expression modules underlying rejection in pediatric liver transplantation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044102/
https://www.ncbi.nlm.nih.gov/pubmed/35492246
http://dx.doi.org/10.1016/j.xcrm.2022.100605
work_keys_str_mv AT ningappamylarappa anetworkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT rahmansyeda anetworkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT higgsbrandonw anetworkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT ashokkumarchethans anetworkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT sahninidhi anetworkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT sindhirakesh anetworkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT dasjishnu anetworkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT ningappamylarappa networkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT rahmansyeda networkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT higgsbrandonw networkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT ashokkumarchethans networkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT sahninidhi networkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT sindhirakesh networkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation
AT dasjishnu networkbasedapproachtoidentifyexpressionmodulesunderlyingrejectioninpediatriclivertransplantation