Cargando…
Deep neural network modeling identifies biomarkers of response to immune-checkpoint therapy
Immunotherapy has shown significant promise as a treatment for cancer, such as lung cancer and melanoma. However, only 10%–30% of the patients respond to treatment with immune checkpoint blockers (ICBs), underscoring the need for biomarkers to predict response to immunotherapy. Here, we developed De...
Autores principales: | Kang, Yuqi, Vijay, Siddharth, Gujral, Taranjit S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044175/ https://www.ncbi.nlm.nih.gov/pubmed/35494249 http://dx.doi.org/10.1016/j.isci.2022.104228 |
Ejemplares similares
-
Non-linear Deep Neural Network for Rapid and Accurate Prediction of Phenotypic Responses to Kinase Inhibitors
por: Vijay, Siddharth, et al.
Publicado: (2020) -
Machine learning identifies molecular regulators and therapeutics for targeting SARS‐CoV2‐induced cytokine release
por: Chan, Marina, et al.
Publicado: (2021) -
Polypharmacology-based kinome screen identifies new regulators of KSHV reactivation
por: Olson, Annabel T., et al.
Publicado: (2023) -
Computational modeling identifies multitargeted kinase inhibitors as effective therapies for metastatic, castration-resistant prostate cancer
por: Bello, Thomas, et al.
Publicado: (2021) -
KInhibition: A Kinase Inhibitor Selection Portal
por: Bello, Thomas, et al.
Publicado: (2018)