Cargando…
Negation and uncertainty detection in clinical texts written in Spanish: a deep learning-based approach
Detecting negation and uncertainty is crucial for medical text mining applications; otherwise, extracted information can be incorrectly identified as real or factual events. Although several approaches have been proposed to detect negation and uncertainty in clinical texts, most efforts have focused...
Autores principales: | Solarte Pabón, Oswaldo, Montenegro, Orlando, Torrente, Maria, Rodríguez González, Alejandro, Provencio, Mariano, Menasalvas, Ernestina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044225/ https://www.ncbi.nlm.nih.gov/pubmed/35494817 http://dx.doi.org/10.7717/peerj-cs.913 |
Ejemplares similares
-
Abstractive text summarization of low-resourced languages using deep learning
por: Shafiq, Nida, et al.
Publicado: (2023) -
A scalable discrete-time survival model for neural networks
por: Gensheimer, Michael F., et al.
Publicado: (2019) -
Breast cancer detection using deep convolutional neural networks and support vector machines
por: Ragab, Dina A., et al.
Publicado: (2019) -
Influence of tweets and diversification on serendipitous research paper recommender systems
por: Nishioka, Chifumi, et al.
Publicado: (2020) -
Nearest labelset using double distances for multi-label classification
por: Gweon, Hyukjun, et al.
Publicado: (2019)