Cargando…
Effect of neural network structure in accelerating performance and accuracy of a convolutional neural network with GPU/TPU for image analytics
BACKGROUND: In deep learning the most significant breakthrough in the field of image recognition, object detection language processing was done by Convolutional Neural Network (CNN). Rapid growth in data and neural networks the performance of the DNN algorithms depends on the computation power and t...
Autores principales: | Ravikumar, Aswathy, Sriraman, Harini, Sai Saketh, P. Maruthi, Lokesh, Saddikuti, Karanam, Abhiram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044238/ https://www.ncbi.nlm.nih.gov/pubmed/35494877 http://dx.doi.org/10.7717/peerj-cs.909 |
Ejemplares similares
-
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022) -
Configural relations in humans and deep convolutional neural networks
por: Baker, Nicholas, et al.
Publicado: (2023) -
Stochastic computing in convolutional neural network implementation: a review
por: Lee, Yang Yang, et al.
Publicado: (2020) -
Hybrid morphological-convolutional neural networks for computer-aided diagnosis
por: Canales-Fiscal, Martha Rebeca, et al.
Publicado: (2023) -
Guiding the retraining of convolutional neural networks against adversarial inputs
por: Durán, Francisco, et al.
Publicado: (2023)