Cargando…
Evaluating graph neural networks under graph sampling scenarios
BACKGROUND: It is often the case that only a portion of the underlying network structure is observed in real-world settings. However, as most network analysis methods are built on a complete network structure, the natural questions to ask are: (a) how well these methods perform with incomplete netwo...
Autores principales: | Wei, Qiang, Hu, Guangmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044246/ https://www.ncbi.nlm.nih.gov/pubmed/35494843 http://dx.doi.org/10.7717/peerj-cs.901 |
Ejemplares similares
-
VIOLA jones algorithm with capsule graph network for deepfake detection
por: K, Venkatachalam, et al.
Publicado: (2023) -
Deep fake detection using a sparse auto encoder with a graph capsule dual graph CNN
por: Kandasamy, Venkatachalam, et al.
Publicado: (2022) -
CGCNImp: a causal graph convolutional network for multivariate time series imputation
por: Liu, Caizheng, et al.
Publicado: (2022) -
Graph coloring using the reduced quantum genetic algorithm
por: Ardelean, Sebastian Mihai, et al.
Publicado: (2022) -
Knowledge graph augmentation: consistency, immutability, reliability, and context
por: Takan, Savaş
Publicado: (2023)