Cargando…
Predicting chemical ecotoxicity by learning latent space chemical representations
In silico prediction of chemical ecotoxicity (HC(50)) represents an important complement to improve in vivo and in vitro toxicological assessment of manufactured chemicals. Recent application of machine learning models to predict chemical HC(50) yields variable prediction performance that depends on...
Autores principales: | Gao, Feng, Zhang, Wei, Baccarelli, Andrea A., Shen, Yike |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044254/ https://www.ncbi.nlm.nih.gov/pubmed/35395577 http://dx.doi.org/10.1016/j.envint.2022.107224 |
Ejemplares similares
-
MS2Tox Machine Learning
Tool for Predicting the Ecotoxicity
of Unidentified Chemicals in Water by Nontarget LC-HRMS
por: Peets, Pilleriin, et al.
Publicado: (2022) -
Art driven by visual representations of chemical space
por: Gaytán-Hernández, Daniela, et al.
Publicado: (2023) -
Biological representation of chemicals using latent target interaction profile
por: Ayed, Mohamed, et al.
Publicado: (2019) -
Effects of treated wastewater on the ecotoxicity of small streams – Unravelling the contribution of chemicals causing effects
por: Kienle, Cornelia, et al.
Publicado: (2019) -
Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation
por: Rongali, Subendhu, et al.
Publicado: (2020)