Cargando…
ACR-SA: attention-based deep model through two-channel CNN and Bi-RNN for sentiment analysis
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) have been successfully applied to Natural Language Processing (NLP), especially in sentiment analysis. NLP can execute numerous functions to achieve significant results through RNN and CNN. Likewise, previous research shows that...
Autores principales: | Kamyab, Marjan, Liu, Guohua, Rasool, Abdur, Adjeisah, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044316/ https://www.ncbi.nlm.nih.gov/pubmed/35494855 http://dx.doi.org/10.7717/peerj-cs.877 |
Ejemplares similares
-
Stock trend prediction using sentiment analysis
por: Xiao, Qianyi, et al.
Publicado: (2023) -
AraCust: a Saudi Telecom Tweets corpus for sentiment analysis
por: Almuqren, Latifah, et al.
Publicado: (2021) -
Adaptive sentiment analysis using multioutput classification: a performance comparison
por: Hariguna, Taqwa, et al.
Publicado: (2023) -
A cooperative deep learning model for stock market prediction using deep autoencoder and sentiment analysis
por: Rekha, KS, et al.
Publicado: (2022) -
Comprehensive sentimental analysis of tweets towards COVID-19 in Pakistan: a study on governmental preventive measures
por: Ali, Muhammad Faisal, et al.
Publicado: (2023)