Cargando…

Video captioning based on vision transformer and reinforcement learning

Global encoding of visual features in video captioning is important for improving the description accuracy. In this paper, we propose a video captioning method that combines Vision Transformer (ViT) and reinforcement learning. Firstly, Resnet-152 and ResNeXt-101 are used to extract features from vid...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Hong, Chen, Zhiwen, Guo, Lan, Han, Zeyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044334/
https://www.ncbi.nlm.nih.gov/pubmed/35494808
http://dx.doi.org/10.7717/peerj-cs.916
Descripción
Sumario:Global encoding of visual features in video captioning is important for improving the description accuracy. In this paper, we propose a video captioning method that combines Vision Transformer (ViT) and reinforcement learning. Firstly, Resnet-152 and ResNeXt-101 are used to extract features from videos. Secondly, the encoding block of the ViT network is applied to encode video features. Thirdly, the encoded features are fed into a Long Short-Term Memory (LSTM) network to generate a video content description. Finally, the accuracy of video content description is further improved by fine-tuning reinforcement learning. We conducted experiments on the benchmark dataset MSR-VTT used for video captioning. The results show that compared with the current mainstream methods, the model in this paper has improved by 2.9%, 1.4%, 0.9% and 4.8% under the four evaluation indicators of LEU-4, METEOR, ROUGE-L and CIDEr-D, respectively.