Cargando…
Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss
BACKGROUND: Ultrasound imaging has been recognized as a powerful tool in clinical diagnosis. Nonetheless, the presence of speckle noise degrades the signal-to-noise of ultrasound images. Various denoising algorithms cannot fully reduce speckle noise and retain image features well for ultrasound imag...
Autores principales: | Zhang, Lun, Zhang, Junhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044345/ https://www.ncbi.nlm.nih.gov/pubmed/35494868 http://dx.doi.org/10.7717/peerj-cs.873 |
Ejemplares similares
-
Augmenting healthy brain magnetic resonance images using generative adversarial networks
por: Alrumiah, Sarah S., et al.
Publicado: (2023) -
Dynamic Residual Dense Network for Image Denoising
por: Song, Yuda, et al.
Publicado: (2019) -
A Generative Adversarial Network-Based Image Denoiser Controlling Heterogeneous Losses
por: Cho, Sung In, et al.
Publicado: (2021) -
Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising
por: Wang, Huidong, et al.
Publicado: (2023) -
Auto-Denoising for EEG Signals Using Generative Adversarial Network
por: An, Yang, et al.
Publicado: (2022)