Cargando…
Leveraging deep contrastive learning for semantic interaction
The semantic interaction process seeks to elicit a user’s mental model as they interact with and query visualizations during a sense-making activity. Semantic interaction enables the development of computational models that capture user intent and anticipate user actions. Deep learning is proving to...
Autores principales: | Belcaid, Mahdi, Gonzalez Martinez, Alberto, Leigh, Jason |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044347/ https://www.ncbi.nlm.nih.gov/pubmed/35494826 http://dx.doi.org/10.7717/peerj-cs.925 |
Ejemplares similares
-
Negation and uncertainty detection in clinical texts written in Spanish: a deep learning-based approach
por: Solarte Pabón, Oswaldo, et al.
Publicado: (2022) -
A cooperative deep learning model for stock market prediction using deep autoencoder and sentiment analysis
por: Rekha, KS, et al.
Publicado: (2022) -
How to detect propaganda from social media? Exploitation of semantic and fine-tuned language models
por: Malik, Muhammad Shahid Iqbal, et al.
Publicado: (2023) -
Abstractive text summarization of low-resourced languages using deep learning
por: Shafiq, Nida, et al.
Publicado: (2023) -
Empirical mode decomposition using deep learning model for financial market forecasting
por: Jin, Zebin, et al.
Publicado: (2022)