Cargando…
Detecting racism and xenophobia using deep learning models on Twitter data: CNN, LSTM and BERT
With the growth that social networks have experienced in recent years, it is entirely impossible to moderate content manually. Thanks to the different existing techniques in natural language processing, it is possible to generate predictive models that automatically classify texts into different cat...
Autores principales: | Benítez-Andrades, José Alberto, González-Jiménez, Álvaro, López-Brea, Álvaro, Aveleira-Mata, Jose, Alija-Pérez, José-Manuel, García-Ordás, María Teresa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044360/ https://www.ncbi.nlm.nih.gov/pubmed/35494847 http://dx.doi.org/10.7717/peerj-cs.906 |
Ejemplares similares
-
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022) -
COVID-Twitter-BERT: A natural language processing model to analyse COVID-19 content on Twitter
por: Müller, Martin, et al.
Publicado: (2023) -
Analyzing perceptions of a global event using CNN-LSTM deep learning approach: the case of Hajj 1442 (2021)
por: Shambour, Mohd Khaled
Publicado: (2022) -
MeaningBERT: assessing meaning preservation between sentences
por: Beauchemin, David, et al.
Publicado: (2023) -
Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM)
por: Farid, Ahmed Bahaa, et al.
Publicado: (2021)