Cargando…
A deep crowd density classification model for Hajj pilgrimage using fully convolutional neural network
This research enhances crowd analysis by focusing on excessive crowd analysis and crowd density predictions for Hajj and Umrah pilgrimages. Crowd analysis usually analyzes the number of objects within an image or a frame in the videos and is regularly solved by estimating the density generated from...
Autores principales: | Bhuiyan, Md Roman, Abdullah, Junaidi, Hashim, Noramiza, Al Farid, Fahmid, Ahsanul Haque, Mohammad, Uddin, Jia, Mohd Isa, Wan Noorshahida, Husen, Mohd Nizam, Abdullah, Norra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044363/ https://www.ncbi.nlm.nih.gov/pubmed/35494812 http://dx.doi.org/10.7717/peerj-cs.895 |
Ejemplares similares
-
Deep Dilated Convolutional Neural Network for Crowd Density Image Classification with Dataset Augmentation for Hajj Pilgrimage
por: Bhuiyan, Roman, et al.
Publicado: (2022) -
Crowd density estimation using deep learning for Hajj pilgrimage video analytics
por: BHUIYAN, MD ROMAN, et al.
Publicado: (2022) -
A Structured and Methodological Review on Vision-Based Hand Gesture Recognition System
por: Al Farid, Fahmid, et al.
Publicado: (2022) -
Analyzing perceptions of a global event using CNN-LSTM deep learning approach: the case of Hajj 1442 (2021)
por: Shambour, Mohd Khaled
Publicado: (2022) -
Editorial: Human-centered AI: Crowd computing
por: Yang, Jie, et al.
Publicado: (2023)