Cargando…
A novel method for financial distress prediction based on sparse neural networks with [Formula: see text] regularization
Corporate financial distress is related to the interests of the enterprise and stakeholders. Therefore, its accurate prediction is of great significance to avoid huge losses from them. Despite significant effort and progress in this field, the existing prediction methods are either limited by the nu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044388/ https://www.ncbi.nlm.nih.gov/pubmed/35492262 http://dx.doi.org/10.1007/s13042-022-01566-y |
Sumario: | Corporate financial distress is related to the interests of the enterprise and stakeholders. Therefore, its accurate prediction is of great significance to avoid huge losses from them. Despite significant effort and progress in this field, the existing prediction methods are either limited by the number of input variables or restricted to those financial predictors. To alleviate those issues, both financial variables and non-financial variables are screened out from the existing accounting and finance theory to use as financial distress predictors. In addition, a novel method for financial distress prediction (FDP) based on sparse neural networks is proposed, namely FDP-SNN, in which the weight of the hidden layer is constrained with [Formula: see text] regularization to achieve the sparsity, so as to select relevant and important predictors, improving the predicted accuracy. It also provides support for the interpretability of the model. The results show that non-financial variables, such as investor protection and governance structure, play a key role in financial distress prediction than those financial ones, especially when the forecast period grows longer. By comparing those classic models proposed by predominant researchers in accounting and finance, the proposed model outperforms in terms of accuracy, precision, and AUC performance. |
---|